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Abstract
In this project, tra�c is simulated according to the cellular automaton of the Nagel-Scheckenberg

model (1992) with di�erent boundary conditions. The sudden occurrence of tra�c jams is successfully
realised as well as boundary induced phases and phase transitions are observed in the Asymmetric
Simple Exclusion Process. The extension to the Velocity Dependent Randomization model leads to
metastabile high �ow states and hysteresis of the �ow. The impact of speed limits on the probability
of the formation of tra�c jams is investigated. Furthermore, the e�ects of on- and o�-ramps and
tra�c lights are analysed.
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1 Introduction
The aim of tra�c-simulation-algorithms is to gain an understanding of (road-)tra�c including it's various
phenomena, e.g. the dependence of the di�erent tra�c parameters as �ow and density or the formation
of tra�c jams.

With the help of a suitable simulation, one can make predections about the development of real tra�c
situations and furthermore use the results to optimise tra�c plannings.

The �rst attempts to simulate tra�c date back into the 1950s. A very important step foreward was the
Nagel-Schreckenberg model (NaSch model) which was invented by Kai Nagel and Michael Schreckenberg
in 1992. It was the �rst model to take into account the imperfect bahaviour of human drivers and was
thus the �rst model to explain the spontanious formation of tra�c jams. The NaSch model is the basis
of this project.

An interesting application of the (extended) NaSch model is for example the OSLIM project [1] which
simulates and predicts the tra�c of North-Rhine-Westphalia online and in real time.

2 The Nagel-Schreckenberg model
The basic NaSch model [2] is a probabilistic cellular automaton: It contains a one-lane-road with discrete
positions (cells). Also time (rounds) and integral velocities 0, ..., vmax are discrete. Every round, �rst
each car updates it's velocity dependent on the position of the next car ahead and then every car moves
according to it's velocity. The updating consists of 4 steps:

1. Acceleration: vn → min(vn + 1, vmax)

2. Deceleration: vn → min(vn, dn − 1)

3. Randomization: vn → max(vn − 1, 0) with probability p

4. Movement: xn → xn + vn

The acceleration step is given by the attempt to drive as fast as possible � within the speed limit vmax.
Every car has the same target velocity vmax. The acceleration is 1. The deceleration step is to avoid
crashes: A car will not drive on or pass the position of the car driving ahead with distance dn. The
randomization step leads to an additional deceleration of 1 with probability p and is due to several
behaviours of human drivers: The �rst one is an overreaction at braking and keeping a too large distance
to the car in front. Secondly, when dn increases, one might have a delay in the acceleration process. As a
last point, at maximum velocity and free lane, one has a probability of sudden deceleration by distraction.
The randomization is the basis for the formation of jams, because otherwise every car would drive with
the ideal velocity, the maximum possible velocity without crashing into the car ahead. After the �rst
three steps, the velocity is updated and the cars move.

An illustration of the NaSch model can be found in �gure 1. The basic model is irreducible: If any

Figure 1: Illustration of updating and moving in the NaSch model. The number in the cells give the
velocity after moving. Left: No randomization: The car in front has free space and accelerates by 1, the
second and third car must decelerate to avoid a crash. Right: The randomization leads to an additional
deceleration of the second car.

step is skipped, the simulation of tra�c will not be successful.
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2.1 Boundary conditions
Since the road is �nite, one has to include boundary conditions. There are two possibilities (�gure 2):
Open and closed boundary conditions.

Figure 2: Illustration of the boundary conditions. Left: Open boundary conditions. Right: Closed
boundary conditions.

For open boundary conditions, one has two parameters: α is the probability, for a car entering the
road, if the �rst cell is free; β is the probability, that a car can leave the road (to another section), if it
is near the end of the road and has enough velocity to reach it in this round. Due to the probabilistic
processes at the on- and o�-ramp, the tra�c density ρ �uctuates in the open boundary case.

Closed boundary conditions mean, that a car, that reaches the ending of the road restarts at the
beginning � the road actually does not have a beginning or end. One obtains a circuit with a �xed car
density ρ.

2.2 Parameters and transfer to reality
The parameters of the NaSch model are the maximum velocity vmax, the probability of random decelera-
tion p, the length of the road (no. of cells) L and the parameters given by one of the boundary conditions,
α and β or ρ.

If one transfers the model to reality, one can assume 7.5m as the space needed for one car and therefore
as the length of a cell. One period can be interpreted as 1 s � the reaction time of drivers. For these values
one obtains, that a velocity of 1 corresponds to a "real" velocity of 27 km

h and furthermore a velocity of
5 � related to 135 km

h � is a good approximation for the maximum speed on a motor way.
Examples for the movement of cars according to the model with open boundary conditions for ran-

domization parameters p = 0.5 as well as p = 0 can be found in �gure 3. The randomization p = 0.5
leads to formations of jams, while in the p = 0 case, the tra�c �ows at best feasibilities. Jams only occur
at the exit.

3 The Asymmetric Simple Exclusion Process (ASEP)
The simplest example for a boundary-induced phase transition is found in the ASEP � a NaSch model
under open boundary conditions with maximum velocity vmax = 1; A car can either drive into the next
cell with probability 1− p, if the cell is free, or stop. For this model one analyses density and �ow states
dependent on the parameters α and β (�gure 4 for p = 0.2 and L = 100). The data values are mean
values of 1000 rounds. One obtains three phases:

• In the free-�ow-phase A, the �ow and the density only depend on α and not on β: cars at the exit
leave the road with a higher probability than new cars enter the road. Because α is low, �ow and
density are low. In �gure 5 one �nds the density pro�les along the road for L = 30. While the total
�ow and density are independent of β, the density pro�le shows that there are jams near the exit
at low β.

• In the high-density-phase B, the �ow does not depend on α, but on β. The probability of leaving at
the exit is low, so a large tailback forms and the �ow is low and only dependent on β. The density
pro�les can be found in �gure 6 for L = 30. At large α, the jam spreads over the whole road. At
small α, the density decreases at the starting point.

• In the maximum �ow phase C, the �ow is nearly independent of α and β. The pro�le shows, that
the density decreases from the starting point to the exit. The maximum �ow is only limited by the
bulk rate/randomization parameter p (compare �gure 8).
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Figure 3: Simulation of the NaSch model for α = 0.3, β = 0.8, L = 30 and p = 0.5 (left) as well as p = 0
(right). Dots stand for free cells. Numbers stand for the velocity of a car in this cell in the last round.
With randomization, sudden deceleration leads to jam formation (red circles); In the p = 0 case, jams
may only occur at the exit.

The obtained results successfully reproduced the phenomena described in [3].

4 Metastability and hysteresis in the Velocity-Dependent-
Randomization (VDR) model

In the VDR model the randomization parameter of each car factors it's velocity in. In a very �rst step,
this parameter is calculated (and used in step 3):

0. Determination of the randomization parameter: pn = p(vn).

At this point the slow-to-start rule is applied: pn =
{

p0, if vn = 0
p, if vn > 0 , with p0 > p. If a car stopped

completely, it takes a longer time to reaccelerate. This new rule leads to the occurrence of metastable
phases and hysteresis of the �ow. There are two possibilities to demonstrate this: A circuit (closed
boundary condition) with di�erent initial starting conditions or a circuit with controlled on-/o�-ramps
to increase/decrease the car density continuous.

4.1 Control by initial Conditions
The two extremal initial tra�c states (for �xed density ρ) are

• a jam, where all cars start in a row with v = 0 (�gure 9 left)

• and a maximum �ow state, where all cars are equidistantly distributed over the whole road (�gure
9 right).

Dependent on these initial conditions, the fundamental diagram, tra�c �ow j vs. density ρ, is
measured (�gure 10 left). For low densities, the �ow increases proportional to the density. This is the
free �ow phase, where additional cars can drive with nearly no disturbance. At some critical density, the
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Figure 4: Tra�c density (left) and �ow(right) in ASEP for p = 0.2. One �nds the three phases A,B and
C. Means of 1000 measurements with road length L = 100.
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Figure 5: Tra�c density pro�les in phase A. Left: α = 0.10, β = 0.15. Right: α = 0.20, β = 0.95. Means
of 1000 measurements.
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Figure 6: Tra�c density pro�les in phase B. Left: α = 0.15, β = 0.10. Right: α = 0.95, β = 0.20. Means
of 1000 measurements.
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Figure 7: Tra�c density pro�les in phase C. α = 0.95, β = 0.95. Means of 1000 measurements.
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Figure 8: Tra�c density and �ow in ASEP for di�erent p. From left to right, top to bottom: p = 0.0,
p = 0.1, p = 0.2, p = 0.3, p = 0.4, p = 0.5. Means of 1000 measurements with road length L = 100.

Figure 9: Illustration of the two initial conditions jam (left) und uniform distribution (right)
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Figure 10: Fundamental diagram of the VDR model. Left: Control by di�erent initial conditions and
Nash model. Right: Control by on-/o�-ramps. Parameters: vmax = 5, p0 = 0.75, p = 1/64, L = 100.
Means of 10000 measurements.
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initial jam cannot disperse and the �ow drops suddenly. For the initial maximum �ow state, much higher
�ows are observed, until it also drops into a jammed state.

One obtains two branches. For the same parameters, two states are possible, while one of them is
metastable. This state can, after some consecutive overreactions, collapse into a jammed state.

In contrast to that, the basic NaSch model with randomization parameter p does not lead to a stable
jam. After the maximum, the �ow decreases linear with the density: Metastability is an e�ect of the
VDR model. Due to the high bulk rate, the NaSch model with parameter p0 never reaches as high �ows
as the other three models.

4.2 Control by on- and o�-ramp
Using on- or o�-ramps, one can move across the branches by controlling the density. Starting at a
completely �lled (empty) road, cars are removed (added) at the ramp. Hysteresis is observed: Here, one
also �nds the two branches dependent on the history of ρ with e�ects of metastability (�gure 10 right).

4.3 Lifetime of the metastable phase
The lifetime τ of the metastable state, reached by the initial condition of a maximum �ow state, is
measured for di�erent maximum velocities dependent on the density ρ (�gure 11). At this place, a jam
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Figure 11: Lifetime τ (log-scale) of the metastable branch for di�erent vmax and ρ. Means of 1000
measurements.

is de�ned as three completely stopped cars in a row.
For high densities, the lifetime is very low and independent of the maximum velocity, because nearly

no car reaches the maximum velocity. With decreasing density, the lifetimes increase more than expo-
nentially. For a given density, a small vmax can lead to lifetimes orders of magnitude larger than at
higher vmax. In the metastable phase, the probability of jam occurrence is much smaller, if the maximum
velocity is reduced. In reality, this can help to avoid tra�c jams by adjusting the speed limit, if densities
in the metastable region are detected.

5 Further applications
There are numerous possibilities to extend the NaSch and the VDR model to take di�erent road situations
into account. Here, the e�ects of on- and o�-ramps and the e�ects of tra�c lights are studied. Further
possible extensions could be the presence of high-distraction regions on the road (e.g. due to construction
zones). These regions can be simulated by raising the randomazation parameter for those cells. Other
extensions are the so-called anticipation models which include every drivers reaction not only to the
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distance to the car directly ahead, but also to the behavior of the second car ahead. Furthermore, one
can get more realistic models by simulating roads with more than one driving-lane, including lane changes
and heterogeneous maximum velocity behaviours for di�erent cars.

5.1 The e�ects of on- and o�-ramps
Here, the e�ects of on- and o�-ramps are studied. The length of each ramp is 25 cells, which corresponds
to 187.5m � similar to real on-/o�-ramps. In this example, the on-ramp starts at the 80th cell, the
o�-ramp at the L−80th cell, while the road is comprised of L = 3000 cells. The density is kept constant,
meaning a car is only added to the road at the on-ramp, if a car can be removed at the o�-ramp in the
same round. The ramps act in every �fth round.

Figure 12 shows the fundamental diagram for the NaSch model with and without the on- and o�-
ramps. One can see, that in the medium density regime, the �ow is decreased and forms a plateau-like
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Figure 12: The fundamental diagram for the NaSch model with and without on- and o�-ramps. The
randomization parameter is set to p = 0.

shape / is independent of the density. This can be understood quite intuitively, since the adding cars at
the on-ramp will lead to a jam-like state just before the ramp.

It was shown, that the density will indeed form a real plateau [3]. This behaviour was not reproduced,
since it would demand for a more complex way of calculating the �ow. This is because one cannot simply
measure the �ow through one cell, since it will obviously be di�erent, depending on where it is measured
(meaning before or after the on-ramp).

5.2 The e�ects of tra�c lights
The e�ects of tra�c lights are studied in the NaSch and the VDR model. The lights change from green
to red and vice versa every �ve rounds. Figure 13 shows the e�ects in both models. In the basic NaSch
model, jams form in front of the red tra�c lights, but vanish again in the green phases. The VDR model
shows a di�erent behaviour. Here, the jams persist and start to move backwards against the driving
direction of the cars, even in the green phases. This is due to the slow-to-start rule.

The more realistic VDR model explains the e�ect of several jams, forming in front of tra�c lights.
With those results, one can use the VDR model to optimise the length of the green- and red-phases on
roads with many tra�c lights, as found in inner city situations. Furthermore, one could include other
e�ects like roundabouts and try to �nd an optimal solution to avoid tra�c at road junctions.
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Figure 13: Tra�c-�ow on a road with tra�c lights. Left: In the basic NaSch model with p0 = p;
Right: In the VDR model with p0 > p (slow-to-start-rule).

6 Summary
The NaSch model successfully simulated the spontaneous formation of tra�c jams and reproduced the
di�erent �ow and density phases observed in real tra�c situations. The VDR model, an extension to the
NaSch model, adding a slow-to-start rule, reproduced e�ects of metastability and hysteresis.

The models can be used to understand, predict and optimise di�erent tra�c situations. Density-
dependend speed limits, the e�ects of on- and o�-ramps and tra�c lights where presented and examined
as examples for the various possible extensions and �elds of applications.
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