Particles in a Potential

Project report in Computational Physics

Inke Jurgensen and Fabian Schwartzkopft

HISKP, University of Bonn

March 2011

Contents

1 Introduction 1
2 Implementation of the Monte-Carlo program 1
2.1 The potential and the heat bath 1
2.2 Random movement of the particles 2
2.3 Studying the temperature dependence 3
3 Results for the 2D two-body potential 5
3.1 The graphical output: different phases 5
3.2 Locations of the phase transitions, 6
4 Modifications of the program 8
4.1 3D particle systemo 8
4.2 Lennard-Jones potentialo 10
5 Conclusion 12
A1Additional screenshots 13
A2Monte-Carlo program 14
A2.1 head.h : calculate the energy 14
A2.2 head-obs.h : calculate the observables, 15
A23head-sdlLh 17
A2.4 Program for the temperature dependence 18

A2.5 Main function of the SDL graphical output 22

1 Introduction

This project work considers a set of two oppositely charged particles which are located in a
finite volume. All particles interact via a two-body potential, given in equation (1). Being
in a heat bath the particles start to move at some temperature.

To study the behavior of the system of particles we implement a METROPOLIS algorithm
and generate new particle configurations at different temperatures. Furthermore we mea-
sure some parameters which can be used to monitor the temperature dependence of the
system.

In the following we are going to describe the used algorithm as well as the results we found.
The complete program is given in appendix A2.

2 Implementation of the Monte-Carlo program

2.1 The potential and the heat bath

First we introduce the two-body potential the particles interact with.

1
Vij=—2 4 (1)

7 =75l =

where ¢; and g; are the charges and 7; denotes the vectorial position of the particles i and
J respectively. The long range part is given by the COULOMB force between the particles,
the short range term, which does not distinguish between charges, is assumed to be a “hard
core”, defining the diameter of the particles later on.
Figure 1 (p. 2) shows a plot of the two-body potential for the cases of equally and oppositely
charged particles.
To determine the potential energy of the whole system one has to sum over all particles
without counting any pair twice:

Viot = Z V;j . (2)

1<)

Since we are going to neglect the kinetic energy of the particles, equation (2) is equal to
the total energy

EZ%O‘L

of the system(!). Further we assume the system to be in a heat bath such that the partition
function is given by the following equation.

o= i fon(-£)] o

with the current temperature 7" and the energy F of the system.
The task now is to determine the behavior of the particles in the heat bath at fixed and
changing temperatures.

11t is realised in the function “sum” in A2.1

different'charges
equal charges

V]

0 1 2 3 4
Ir_i-rj

Figure 1: Two-body potential given in eq. (1) for particles with different and equal charges

2.2 Random movement of the particles

Starting the calculations we consider the A particles to build a 2 dimensional (D = 2) grid
where the distance between next neighbours is

g=15.

Taking a look at the potential, one can see that it intersects the x-axis at 1. While one
would consider this to be the particle diameter, some tests show that it appears to be
at approximately 1.35, which turns out to be the minimum of the function. This might
be caused by the the hard core term being rather sharp (see power of the denominator).
Additional tests show that an initial particle lattice distance of 1.5 leads to reasonable
results at low temperatures, where smaller distances, e.g. the particle diameter itself,
cause the system to become too stable to move at all. This motivates the choice of this
quite arbitrary value of 1.5. However, after some iterations, the particle distance reduces
to a more stable value.

To save the actual position we create an array X1 of the size of D x A where the x and y
coordinates of the ith particle are written after each other(®?). We also define the charges
of the particles, which are alternating for each one, ¢; € {—1,1}. Now we want to move
the particles randomly with a maximal step range d. Therefore we generate new = and y
via the following formula(®):

Tinew = Liold + (_1>] red) (4)

e X1[0] =z, X1[1] = y1, X1[2] = 29, X1[3] = v, . ..
3see the function “ort” in appendix A2.1

where the ¢ induces the x and y components. Further r € 1o, is a unitary distributed
random variable and j € {1,2}. Each coordinate now is shifted between +d and —d and
thus the particles can move inside a square of side length 2d.

After moving all particles one time we calculate the energy difference AE between the old
and the new particle configuration. The step will be accepted with the probability

p = min (1, exp (—ATE>> , (5)

where the configuration will be accepted every time if 1 < exp (—%) and with a proba-

bility of exp (—%) in the other case. If the exponent is smaller than 1 we generate a new
random variable

T E]1[0’1]
and accept the new particle configuration if

7 < exp (—ATE> : (6)

Otherwise the new positions of the particles are not accepted and the old coordinates will
be shifted again(®).

In section 3.1 we present the results of moving the particles after several iterations at
different, fixed temperatures.

2.3 Studying the temperature dependence

So far we are able to move the particles at a fixed temperature but the pure movement will
not tell us a lot about the states the system is in. Therefore we introduce three observables
which will change significantly if the system experiences a phase transition.

1. The average pair distance
2. The average distance of a particle to its next neighbour

3. The average number of particles in the neighbourhood of a particle

In the following these observables will be explained in detail.

1. Average pair distance
The first value to measure is the average pair distance. It is given by equation (7) and
states the average distance between all possible particle pairs ¢ and j.

2 o
RZmZW—U! (7)

1<j

4For the whole program see appendix A2.4 with the head folder in A2.1

In the program this calculation is realized by adding all absolute values of the particle
distances(®).

2. Average distance to the next neighbour

1 . — —
B =3 min(|f -) ®)
A#j

The average distance to the next neighbour of a particle is again calculated using the abso-
lute value of the particle distances. In one turn all distances are calculated and compared.
The smallest values for each single particle are added to each other and then normalized
with the total number of particles A (6)

3. Average number of particles in the neighbourhood
Before we calculate this number we have to define the neighbourhood we want to study.
Therefore we consider a circle of radius 2 around the particles.

|7 =7 <2 (9)

Next we only want to consider particles which are located inside the “particle box™(™)(i.e.
have the maximum number of neighbours when setting up the initial lattice). Now we
calculate the distances between all particle pairs and rise an integer a if the distance is
smaller or equal 2. Finally we have to subtract a by one because the program also will
count the distance to the particle itself. This number is calculated for all particles and
then normalized by the number of particles not being at the border of the system.

At a given temperature we now move all particles N times and calculate these three ob-
servables. To get better statistics we repeat this measurement 10 times at one temperature.
After each run the particles are placed at the initial lattice again to get proper results for
every run.

The program starts at an initial temperature and increases the temperature automatically
to a given maximal temperature. For each temperature step the three observables are
measured 10 times, as described before.

5see the function “dist” in appendix A2.2
6realized the function “NN” in A2.2
"we wrote a “border” function in A2.2

3 Results for the 2D two-body potential

3.1 The graphical output: different phases

As described in section 2.2 the program moves the particles at a fixed temperature. In
addition to the program we created a direct graphical output via the SDL engine (). It
allows us to monitor the system with given parameters (like step range, temperature and
number of particles) to find an optimal configuration of these. Having set the parameters,
we can calculate the values that characterise the phase transitions. However, as told be-
fore, this graphical output alone cannot be used to find the exact temperature values of
the different phases.

Next we show some significant snapshots of the SDL output which illustrate the behavior
of the system at different phases.

temperatures, it is in a solid state.
® ® The original lattice persists but will
:.. ... occasionally rotate or deform a bit.

... However it still stays box-like.

0%e
... When observing the system at low
e
@

Figure 2: Solid state

Increasing the temperature, the lat-

® ..‘ .. tice breaks open and starts to build

... ([strings of particles. The system goes

'Y) % .. into a liquid state where every parti-
...... ® : cle still has a neighbour right next to

.. Y it. As in a real system, some parti-

cle pairs move apart from the cluster
what is equal to vaporisation.

Figure 3: Liquid state

8http://www.libsdl.org/, see appendix A2.5 with the head folders in A2.1 and A2.3

With a rising temperature, the

g p)
strings seen in the liquid state also

g

o ‘ [PY start to break and the particles oc-
... .. ® cur pairwise. One can still ob-
® ® serve bunches or cluster like struc-
:.. ® tures which are not bound over time
® though. This is what one calls a

.. ® gaseous or molecular gas state.

0,%0 00 0
@

Figure 4: Gaseous state

@

® ® [® At even higher temperatures, the
PY system goes into a saturated state
® ® where the charge of each particle can
® (] ® be neglected. Increasing the temper-
® ature furthermore does not change
Q¢ LY the behavior of it anymore. The
@ o0 gas is now completely ionized. The
O 3 S probability for any new random po-
® ® o sition is so high that even particles
o ® 0 .. ® with identical charges move close to

® o P each other.

Figure 5: Plasma-like state

3.2 Locations of the phase transitions

As the transitions between the different phases cannot be located easily in the graphical
output, they can be seen very well when taking a look at the observables described in
section 2.3. In figure 6 all three of these observables are plotted against the logarithmical
temperature.

The first phase transition from solid to liquid can be seen at the point where both, the
average pair distance and the average number of particles in the neighbourhood of a particle
change. As the lattice in figure 2 starts to break open, the distance between all possible
pairs starts to rise while the number of particles in the neighbourhood decreases. Since
there still are strings of particles (every particle has a neighbour right next to it), the
distance to the next neighbour stays the same.

18 T T T

average pair distance —s»—

16 neighbourhood —s— _
next neighbour —s—

14 | { 1

| |
| | |

2 F ¥ 4
Eo * » Ed ;
0 1 1 g Z = 1 I * 2
0.01 01 1 10

Figure 6: Average pair distance, average distance to next neighbour and average number
of particles in the neighbourhood plotted against the temperature; 2-dimensional case for
the two-body potential given in eq. (1)

Going into a gaseous state, the particles will occasionally move away from their partner.
Thus, the distance to the next neighbour increases so that the transition from liquid to
gas-like can be located at the rising point of that specific observable.

The transition from molecular to ionized gas is rather hard to locate since the phases are
very similar in their behavior. Taking a look at the slope of the observables, one can
see the predicted saturation value. The observables are fluctuating around it, even if the
temperature is increased. Thus, the starting point of the saturated value can be seen as
the last phase transition.

Regarding both, the graphical output and the plotted observables, we located the phase
transitions at the values given in the following tabular.

’ Transition | Temperature range ‘
crystal<+liquid 0.01 —0.02
liquid<+>molecular gas 0.06 — 0.08
molecular gas<+ionic gas | = 0.3

4 Modifications of the program

4.1 3D particle system

As a first modification we generalise the system to the three dimensional case.

Modification of the functions

The global variable "D’ in the C-programs is increased from 2 to 3. Now the y coordinate
in the initial grid reaches the point where the z component will be risen too. The initial
two dimensional grid will be placed [times in a row, where [is the length of the lattice.
Thus, the new lattice is three dimensional.

Since we constructed all loops and conditions in the program with an end-point at D % A,
as well as the variable arrays, we do not need to change anything for the program to work.
The potential stays the same due to its dependence on the absolute value of the difference
between the particle positions. Since the program works the same now we are able to
simulate the 3D particle system at different temperatures and we can calculate the three
observables introduced in section 2.3.

Phase transitions

Before presenting the temperature dependency of the new system we take a look at a
picture of the particles after they have moved some time. Figure 7 shows the system at
T = 0.03 being in a liquid state.

Figure 7: Screenshot of the particle system at T'= 0.03 in a liquid state

It seems that some equally charged particles are next to each other but in fact they are not.

Due to the additional dimension, it is hard to create a clear visualisation of the system
or to find a good perspective. For that reason, we skipped implementing an additional
graphical output via SDL or OpenGL for the three-dimensional case.

In the picture, at the top right, one can see a pair of particles being separated from the
others like in the two dimensional case, see figure 3.

To compare the predictions of the three-dimensional case with the two-dimensional one,
we calculate the average pair distance, the average distance to the next neighbour and the
average number of particles in the neighbourhood and plot them against the temperature
(see figure 8). As described in section 2.3 we average over 10 calculations.

average pair distance —e—

18 t) -
neighbourhood —s—

16 | next neighbour —s— { 1

14 | 1

12 { _

0|] _

HH

0.001 0.01 01 1
T

Figure 8: Average pair distance, average distance to next neighbour and average number
of particles in the neighbourhood plotted against the temperature; 3-dimensional case for
the two-body potential given in eq. (1)

As expected, the behavior of all three observables is the same as in the 2D case. The
average pair distance increases with the temperature while the average number of particles
in the neighbourhood decreases. The average distance of a particle to its next neighbour
stays constant first but increases at the next phase transition.

4.2 Lennard-Jones potential

Next we want to study the behavior of particles interacting through another potential than
the one introduced in eq. (1), the LENNARD-JONES potential:

1 1

R RN

Vij = (10)

The potential describes a two-body interaction of uncharged particles. The attractive part
of the potential is given through VAN DER WAALS forces where the repulsive part is caused
by the so called exchange interaction (*). Figure 9 shows a plot of the LENNARD-JONES

potential. As comparison the two-body potential for oppositely charged particles is shown
again.

8 .
two-body pot. ——
Lennard Jones pot, ——
B
4 L
T
>
2
0
_2 1 1 I
0 1 2 3 4

Iri-rjl

Figure 9: LENNARD-JONES potential (eq. (10)) for uncharged particles and two-body
potential (eq. (1)) for oppositely charged particles

Setting the integer 'len’ in the program to 1 the LENNARD-JONES potential will be used
to calculate the energy of the system. The rest does not need to be changed to calculate
the average pair distance, the average distance to next neighbour or the average number
of particles in the neighbourhood of a particle.

Figure 10 shows the three observables plotted against the temperature. One can clearly
see that the system of particles interacting via a LENNARD-JONES potential only shows
one phase transition. While the next neighbour distance stays constant for the 2-body

91f the electron clouds of two particles overlap, fermions with same quantum numbers repel each other.

10

potential used before, in this case all three observables change at the same temperature
scale. This leads to our assumption that the system starts in a liquid state and becomes
gaseous rather fast. Since the particles do not have any charge at all, they will not stay or
align in the lattice which the systems started from.

average pair distance —s»—
neighbourhood —s—
next neighbour —s—
10 . . : :

3 F . n % T

5 L Pkt ¥ % } ; 1
:

1 | ¥ ¥ % 1 % % % % % 1

%.001 D.(III_ Orl i;_ 1ID

Figure 10: Average pair distance, average distance to next neighbour and average number
of particles in the neighbourhood plotted against the temperature; 2-dimensional case for
the LENNARD-JONES potential given in eq. (10)

In appendix Al there are two snapshots of the particles interacting via the LENNARD-
JONES potential. One can see the system being in a liquid (fig. 11) and a gaseous (fig. 12)
state.

11

5 Conclusion

We simulated a system of many particles to study its behavior at different temperatures
but also for different variable configurations. We implemented a direct graphical output
and calculated observables to get more information about the different phases, the system’s
behavior in these phases and the phase transitions.

After locating ranges for these phase transitions, we regarded this behavior in a system
with an additional dimension as well as in one with a different potential and compared the
results of these with the original problem.

Although we first had some problems related to calculation time or graphical output,
we were able to use a METROPOLIS algorithm to study a particle system at different
temperatures and the MONTE-CARLO program delivers us the expected results.

12

Appendix

A1 Additional screenshots

System of particles in a Lennard-Jones potential

®
od’ ooo.O.o
:.:%::“ ...0 .0..
®e
e o® O
®

Figure 11: System in a liquid state Figure 12: System in a gaseous state

13

0 O Uik Wi

©

A2 Monte-Carlo program

A2.1 head.h : calculate the energy

#define D 2 // dimension

// calculate the absolute value of vectorial coordinates
double betr(double *X1, int i, int j){
double b=0;
int 1;
for (1=0;1<D; 14++4) bt+=pow (X1[1+i]-X1[1+j],2);
return sqrt(b);

}

//potential for particles i and j
double pot(double xX, int *Q, int i, int j, int 1){
double b,v;
b=betr (X,i,j);
v=(double) (Q[i/D]*Q[j/D]) /bt+pow(b,-8);
//lennard jones potential
if (1==1) v=(double) (pow (b, —12)—pow(b,—6));
return v;

}

//sum over all potentials for i<j
double sum(double *X, int *Q, int A, int 1){

int i=0,j;
double s=0;
while (1<D*A) {
j=i4D;
while (j<DxA) {
s+=pot (X,Q,i,j,1);
=D
}
i+=D;
}
return s;

}

//calculate a new (random) position, for each coordinate seperately:

//used for the observable#define PI 3.14159265— function

double ortl (double x1, double d, int 1,double c¢,double g){

double r,x2=gx14+c+1;

while ((x2>=(gx14c)) || (x2<=(1—-¢))) {
r=(double)rand () /RANDMAX;
j=rand () %2+1;
x2=x14+pow(—1,j) *r=d;

}

return x2;

14

48 //used for the graphical—output—function
49 double ort2(double x1, double d, int B){

50 int j;

51 double x2=0,r;

52 while ((x2>=B—1.35/2.) || (x2<=1.35/2.)){
53 r=(double)rand () /RANDMAX;

54 j=rand () %2+1;

55 x2=x14+pow(—1,j) *r=d;

56 }

57 return x2;

58 1

59

60 //calculate the energydifference between new(X2) and old(X1) positions
61 double DE(double *X1,double *X2 int *Q, int A,int 1){

62 double E=sum(X2,Q,A,1)—sum(X1,Q,A,1);
63 return E;
64 }

A2.2 head-obs.h : calculate the observables

1 #define D 2 // dimension

2

3 // calculate the absolute value of wvectorial coordinates
4 double betr (double xX1, int i, int j){

5 double b=0;

6 int 1;

7 for (1=0;1<D; 14+4) bt+=pow (X1[1+i]-X1[1+j],2);
8 return sqrt(b);

9 }

10

11

12 //average distance
13 double dist (double *X, int A){

14 int i=0,j=0;

15 double R=0;

16 while (1<Dx*A) {

17 j=i4D;

18 while (j<DxA) {
19 Rt=betr (X,i,j);
20 j+=D;
21 }

22 i+=D;

23 }

24 Rx=2./(Ax(A-1));

25 return R;

26

27 //2dim border of the system

28 int border(int i,int A){

209 int j=1,1;

30 l=(int) (sqrt (A));

31 if ((i==0) || (i==(1-1)) |[(i==A=1)) [[(1==(A=1))) j=0; //corners

15

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
92
53
54
55
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82

((1>0)&&(i<(1-1))) j=0; //lower border
f((i%1==0)&&(i<(A-1))) j=0; //left border
(((1+D)%1==0)&& (1 <(A-1))&&(i>(1-1))) j=0; //rhight border

1))
£((i>(A-1))&&(i<(A-1)))]

return j;

}

// calculate number of particles in the neighbourhood of particle i
double umf_i(double X, int A, int i,double g){
int j=0;
double a=0,b;
while (j<D#A) {
b=betr (X,i,j);
if (b<=2) a-++;
=D
}
a=a—1;
return a;

}

/x calculate number of particles in the neighbourhood for all particles,
if they are note located at the border of the systemx/
double umf_all (double X, int A, double g){
int i=0,j=0,r=0;
double a=0;
while (1<D=A) {
if (((border (j ,A)==1)&(D==2)) || (D==3)){
at=umf_i(X,A)i,g);
r++;

0; //upper border

}
i+=D;
JA+
}
=(double)a/r;
return a;

}

//distance to the next meighbour for all particles
double NN(double *X, int A){
int i=0,j;
double b=0,bl,b2;
while (1<DxA) {
if (i==0) j=D;
if(i>0) j=0;
bl=betr (X,i,j);
while (j<DxA) {
b2=betr (X,i,j);
if ((b2<bl)&&(il=j)) bl=b2;
j+=D;

}
b+=b1;

16

83 i+=D;
84 1

85 b=(double) (b/A);

86 return b;

87)

88 //calculate mean and standard deviation
89 double mean(double xA,int K, int var){
90 double zb=0,zqb=0,zbq;

91 int z;

92 for (z=0;2<K; z++){
93 zb+=A[z];

94 zqb+=A[z]*A[z];
95

96 zb=zb /K;

97 zqb=zqb /K;

98 zbq=zbxzb ;

99 if (var==1) zb=sqrt (zqb—zbq);
100 return zb;

101 }

A2.3 head-sdl.h

#define WIDTH 700
#define BPP 4
#define DEPTH 32

//pizel drawing function
void set_pixel (SDL_Surface xsurface, int x, int y, Uint32 pixel){
Uint8 xtarget_pixel = (Uint8 x)surface—>pixels + y % surface—>pitch
+ x x 4;
8 x(Uint32 *)target_pixel = pixel;
9 }
10
11 //white background drawing function
12 void WBackground (SDL_Surfacex screen, int B){
13 int x, y;
14 for (y=0;y<B; y++){
15 for (x=0;x<B; x++){
16 set_pixel(screen, x, y, Ox{fffffff);
17 }
18 }
19 }
20
21 //drawing the border of the circle
22 void draw_circle (SDL_Surface xsurface, int cx, int cy, int radius, Uint32

N OOt WD

pixel){
23 int error=radius;
24 int x=radius;
25 int y=0;
26 while (x>=y) {
27 set_pixel (surface, cx + x, ¢y + y, pixel);

17

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
93

54
55
56
o7
o8

59

60
61
62
63
64
65
66
67

T W N =

set_pixel (surface, cx +y, cy + x, pixel);
if(x!=0){
set_pixel (surface, cx — x, cy + y, pixel);
set_pixel (surface, cx +y, cy — x, pixel);
if (y!=0){
set_pixel (surface, cx + x, cy — y, pixel);
set_pixel (surface, ¢cx — y, cy + x, pixel);
¥
if (x!=0&&y!=0){
set_pixel (surface, ecx — x, ¢y — y, pixel);
set_pixel (surface, cx —y, cy — x, pixel);
}
error+=y;
Y
error+=y;
if (error >=0){
—x;
error —=x;
error —x;
}
}
}
//filling the circle with a specific color

void fill_circle (SDL_Surface ssurface, int cx, int cy, int radius, Uint32
pixel){
double r=(double)radius ,dy;
for (dy=1;dy<=r;dy+=1.0){
double dx=floor (sqrt ((2.0xrxdy)—(dy*dy)));
int x=cx—dx;
Uint8 xtarget_pixel_a=(Uint8 x)surface—>pixels+((int) (cy+r—
dy))*surface —>pitch+x+BPP;
Uint8 xtarget_pixel_b=(Uint8 x)surface—>pixels+((int)(cy — r
+ dy))*surface—>pitch+x*BPP;
for (;x<=cx+dx;x++){
*(Uint32 *)target_pixel_a=pixel;
*(Uint32 *)target_pixel_b=pixel;
target_pixel_a+=BPP;
target_pixel _b+=BPP;

}

A2.4 Program for the temperature dependence

#include <stdio.h>
#include <stdlib .h>
#include <math.h>
#include <time.h>
#include “head.h”

18

6 F#include ”head—obs.h”

7

8 #define PI 3.14159265

9 #define D 2 // dimension

10

11

12 int main(int argc, char sxxargv){
13 srand (time (NULL)) ;

14 double x,y,z; //coordinates

15 double g=1.5,d=0.1; //grating and steprange

16 int N,n=0,A,1=5,B=30; //number of steps N & number of particles A
17 double E=—1., T=0.005,Tmax; //energy, temperature

18 double r.t,c; //random wvariable r & ’‘temp. steprange’ t
19 double R1,VR1,bl,Vbl,al,Val; //measurements

20 int i,j,k,K,len; //counting integers

21 FILE xtemp; //file to save all measurements

22 temp=fopen ("temp. txt”,"w”) ;

23 if (temp=—=NULL) return 1;

24

25

26 if (arge>5){

27 N=atoi(argv[1]);

28 T=atof (argv[2]);

29 Tmax=atof (argv[3]) ;

30 K=atoi(argv[4]) ;

31 len=atoi(argv[5]);

32 telse{

33 printf(”_steps?_T_initial?_T _final?_number_of_calc?_lennard._jones?\n”);
34 return 0;

35)

36 if (len==1) g=1.0; //different lattice for lennard—jones pot.
37 t=log (T);

38 A=pow (1 ,D); //number of particles depending on dimension
39 c=(B—(1-1)); //constant to create a ’'border’ for the system
40 //arrays for D coordinates for A particles

41 double *X1;

42 Xl=malloc (DxAxsizeof (double)) ;
43 double *X2;

44 X2=malloc (DxAxsizeof (double)) ;
45 int #Q;

46 Q=malloc (DxAxsizeof (int)) ;

47 //arrays for calculating behavior under tamperature change
48 double *R;
49 double xa;
50 double xb;

51 R=malloc (K«sizeof (double)) ;
52 a=malloc (Kxsizeof(double)) ;
53 b=malloc (Kxsizeof (double)) ;
54

55 //define the charges

56 i=1;

19

57
58
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

97

98

99
100
101
102
103
104
105
106

j=0;
while (j<DxA){

for (beta=0;beta<D;beta++){
Qlil=i;
T+

}

beta=0;

i=ix(—1);

//move of the particles:
while (T<Tmax) {

for (k=0;k<K; k++){

//initial (lattice) coordinates

//if D=2 this point will not be reached

x=1;
y=1
z=1;
i=0;
while (1<DxA) {
if ((x=g*14+1)&&(i>0)){
y+=g;
x=1;
}
if ((y=gx*x141)&&(i>0)){
z+=g;
y=1
x=1;
}
for (j=0;j<D;j++){
if (j==0) X1
if (j==1) X1[j+i]=y;
if(j==2) X1
¥
xt=g;
i+=D;
}
// sum over n for N steps
while (n<N) {

new positions or notx/

labell :;

/xin one step we calculate the new position

of all particles ,then accept

//calculate new positition of all particles for each coordinate

for (i=0;i<D*A;i++){

r=(double)rand () /(double) RAND MAX;
X2[i]=ort1(X1[i],d,1,c,g);

//calculate energy difference between new and old positions

E=DE(X1,X2,Q,A, len) ;
//accepting with prob. 1
if(l1<exp(=E/T)){

20

all

107 for (1=0;i<D+A; 1+—|—){

108 X1[i)=X2[i];
109

110 telse{

111 //accepting with prob. r

112 r=(double)rand () /(double) RAND MAX;
113 if (r<exp(-E/T)){

114 for (i=0;i<D*A;i++){
115 X1[i]=X2[i]:
116 }

117 telse{

118 if (T>0) goto labell;
119 }

120

121 }

122 n++;

123 }

124 n=0;

125 R[k]=dist (X1,A);

126 alk]=umf_all (X1,A,g);

127 b [k]=NN(X1,A) ;

128 }

129 Rl=mean (R,K,0) ;

130 VRl=mean (R,K,1) ;

131 al=mean(a ,K,0) ;

132 Val=mean(a,K,1) ;

133 bl=mean(b,K,0) ;

134 Vbl=mean(b,K,1) ;

135 fprintf (temp, "%f %f %f %f Y%f %f %f\n” ,T,R1,VR1,al,Val,bl,Vbl);
136

137 t+=0.7;

138 T=exp(t);

139}

140

141 void free(void *X1);

142 void free(void *X2);

143 void free(void *R);

144 void free(void =xa);

145 void free(void xb);

146

147 fclose (temp) ;

148

149 FILE =xts; // file for gnuplot plotting the measurement
150 ts=fopen ("ph—sk.txt”,”’w”);

151 if (ts=NULL) return 1,

152 fprintf(ts,”set.xlabel.’T’\n”

153 "set_ylabel_’"\n”

154 "set oxrange.[0.001:% {]\n

155 "set_autoscale_y\n”

156 "setotitle.’’\n”

157 "set._logscale._x\n”

21

158 "set_pointsize_1\n”

159 "set _key._.outside_bottom\n”

160 "plot.’temp.txt’ u.l:2:3 .woyerrorbars.title.’average_pair_distance’, .’
temp.txt’ou.l:4:5 woyerrorbars.title. neighbourhood ’, . temp. txt’ _u.
1:6:7_w_yerrorbars_title. next_neighbour’” ,Tmax) ;

161 fclose (ts);

162 printf(”?\n_.wrote_a.skript._for._.the_average._distance:.’ph—sk.txt’\n”);
163 void free(void *Q);

164

165

166 return 0;

167

168 }

A2.5 Main function of the SDL graphical output

#include <stdio.h>
#include <stdlib .h>
#include <math.h>
#include <time.h>
#include ”SDL/SDL.h”
#include "head.h”
#include "head—sdl.h”

0O Ui Wi =

9 #define WIDTH 700

10 #define BPP 4

11 #define DEPTH 32

12 #define DEG2RAD PI/180
13 #define PI 3.14159265
14 #define D 2

16 int main(int argc, char xxargv){

17 SDL_Init (SDLINIT_EVERYTHING) ;

18 double E=—-1.T,r,g.,d,x,y,c,p,z;

19 int keypress=0,N,n=0,i,j,A,B,1,q,potent;
20 char xkey;

21 SDL_Event event;

22 srand (time (NULL)) ;

23 //reading in the wvariables

24 if (arge>7){

25 l=atoi(argv[1]);

26 B=atoi(argv[2]);

27 d=atof (argv[3]) ;

28 T=atof (argv [4]);

29 N=atoi(argv[5]) ;

30 z=atof (argv[6]) ;

31 potent=atoi(argv[7]);

32 telse{

33 printf(”Lattice_length _—_Boundary._length._—_Steprange._—_Temperature._—._
Number_of_iterations .—_.Temperature_.changing_parameter_—_Lennard.

potential?\n”);

22

34 return 0;

35
36 //number of particles
37 A=1x1;

38 //initial lattice distance
39 if (potent==0){

40 g=1.5;
41 telse{
42 g=1;
43 }

44 //space between boundary and lattice

45 c=(B—(1-1)*g);

46 //lattice length+particle diameter must not exceed the boundary
47 if(1xg>=B—-1.35){

48 printf(”Lattice_too_wide! _%1f\n” ,B-WIDTH/Bx1.35) ;
49 return 1;
50

51 //initialisation of the graphical output

52 if (SDL_Init (SDLINIT_VIDEO) != 0){

53 return 1;

54

55 atexit (SDL_Quit) ;

56 //setting the graphical output screen

57 SDL_Surface *screen = SDL_SetVideoMode (WIDTH, WIDTH, 0, SDL DOUBLEBUF) ;

58 SDL_WM _SetCaption(”Particles.in.a_potential”, ”"Particles.in_a_.potential”);
59 printf(”\n\nWelcome_to_Particles_in_a_Potential!\nPress_Esc_to_quit ,_+,1_
or_.3._to_increase._and.—,2_.or_4_to_decrease_the_temperature._Have_fun..;)

\n\nThe_starting _temperature_is_%.31f\n” T);
60 //allocating the location arrays and charge array
61 double *X1;
62 Xl=malloc (D«xAxsizeof(double)) ;
63 double *X2;
64 X2=malloc (DxAxsizeof (double)) ;
65 int xQ;
66 Q=malloc (Axsizeof (int));
67 //defining the charges

68 j=0;

69 if (1%2==0){

70 for (i=0;i<A;i++){

7 Qli]=pow(—1,i+j);

72 if (((141)%1==0)&&(i>0)) j++;
73 }

74 telse{

75 for (i=0;i<A;i++){

76 Q[i]=pow(—1,i);

7 }

78

79 //initial grid beginning and writing
80 x=c/2.;

81 y=c/2.;

82 i=0;

23

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

131

while (i<D#A){

if ((x=gx*xl+c/2.)&&(i>0)){

yt+=g;
x=c/2.;
}
for (j=0;j<D;j++){
if (j==0){
X1[j+i]=x;
X2[j+i]=X1[j+1];
telse{
X1[j+i]=y;
X2[j+i]=X1[j+1];
}
}
xt=g;
i+=D;
}
while (1) {
while (n<N) {

for (i=0;i<D*A; 1+=2){

//calculating the new position of all particles

X2[i]=ort2(X1[i],d,B)
X2[i+1]=ort2 (X1[i

}

+1],d,B);

//calculating energy difference between new and old positions

//locking the screen and drawing the particles

E=DE(X1,X2,Q,A, potent);
//accept—reject method
if(1.<exp(=E/T)){
for (i=0;i<D*A; i++){
X1[i]=X2[1i];

telse{

r=(double)rand () /(double) RAND MAX;

if (r<exp(—E/T)){
for (i=0;i<D*A;i++){
X1[i]=X2[1i];

}
}

n++;

SDL_LockSurface (screen);
WBackground (screen , WIDTH) ;
for (1=0;i<D#*A;i+=2){

if (potent==1){

fill_circle (screen ,

draw_circle (screen

(
(int) (WIDTH/Bx0.5)
(
)

(int) (WIDTH/Bx%0.5

24

int) (foV]]?(I)H/Bx;Xl[i]) , (int) (WIDTH/B+X1[i+1]),
int) (WIDTH/B+X1[i]) , (int)(WIDTH/B+X1[i+1]),
. 0xf£000000) ;

132
133
134

135

136
137

138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176

telse{
i£(Q[1/2]<0)1
fill_circle (screen, (int)(WIDTH/BxX1[i]), (int)(WIDTH/B«X1[i+1])
, (int) (WIDTH/Bx1.35/2), 0xftff0000);
draw_circle (screen, (int)(WIDTH/B*xX1[i]), (int)(WIDTH/B+X1[i+1])
, (int) (WIDTH/B*1.35/2), 0xff000000);
telse{
fill_circle (screen, (int)

—~

WIDTH/B+X1[i]) , (int)(WIDTH/B+X1]i+1])

, (int) (WIDTH/B%1.35/2), 0xff0066ff);
draw_circle (screen, (int)(WIDTH/B«X1[i]), (int)(WIDTH/B«X1[i+1])
, (int) (WIDTH/B*1.35/2), 0xff000000);

}
}
}
SDL_FreeSurface (screen);
SDL_Flip(screen);
n=0;
while (SDL_PollEvent(&event)){
//defining the keys to control the program
switch (event.type){
case SDL_QUIT:
exit (1) ;
break;
case SDLKEYDOWN:
key=SDL_GetKeyName(event . key . keysym .sym) ;
if (event .key.keysym.sym—SDLK ESCAPE) {
exit (1) ;
}

if (event.key.keysym.sym—SDLK PLUS) {
TH=z;
printf(”Temperature_increased .to.%.31f\n” T);

if (event.key.keysym.sym=—SDLK MINUS) {

T=T-z;
if (T<=0){
TH=z;
printf(”Sorry,.no_.negative_temperatures...\ nTemperature_.at.
%.31f\n” ,T);
telse{
printf(”Temperature_.decreased .to.%.31f\n” T);
}
}
if (event.key.keysym.sym=—SDLK_1){
T4+=zx%10;
printf(”Temperature_increased .to.%.31f\n” T);
}
if (event .key.keysym.sym—SDLK 2){
T=T-zx*10;
if (T<0){
T4+=z%10;

25

177 printf(”Sorry ,.no_negative_temperatures ...\ nTemperature_at._

%.31f\n” ,T);

178 telse{

179 printf(”Temperature_.decreased .to_.%.31f\n” T);

180 }

181 }

182 if (event.key.keysym.sym=—SDLK_3) {

183 TH=zx50;

184 printf(”Temperature_increased .to.%.31f\n” T);

185 }

186 if (event.key.keysym.sym=—SDLK 4){

187 T=T-z*50;

188 if (T<0){

189 TH=zx50;

190 printf(”Sorry,.no_.negative_temperatures...\ nTemperature_at.
%.31f\n” ,T);

191 telse{

192 printf(”Temperature_.decreased .to.%.31f\n” ,T);

193 }

194 }

195 }

196 }

197 }

198 void free(void *X1);
199 void free(void *X2);
200 void free(void *Q);
201

202

203 return O0;

204

205 }

26

