1 Introduction

In 1981, Witten and Sander discovered that complex dendritic structures could be created by having ‘particles’ perform a random walk on a lattice and stick together on contact (fig. 1). This can be considered a rather surprising result, since without any preferred direction in the motion of particles one would naturally expect to end up with some sort of compact ‘blob’. In fact, structures grown according to this or a similar method turn out to be natural fractals, i.e. they exhibit a certain scaling behaviour within an appropriate range. The result is all the more remarkable, since Witten and Sander modelled it on natural phenomena – the random walk corresponding to Brownian motion and the sticky particles representing some adhesive molecules or sedimenting colloids.

The prospect that the formation of structures which had up to then been believed to be dominated by complicated interactions could be reduced to such easy principles together with the connection to the then just emerging theory of fractal geometry sparked a remarkable interest and was the basis for many follow-up publications.

Focussing on two particular growth models developed by P. Meakin using the results of Witten and Sander and M. Eden, we give a brief introduction to the basics of fractal growth and present the current status of a universal toolkit capable of simulating discrete growth processes in a very general way. It is applied to check some earlier heuristic results.

Further Reading Since this text is composed in a review-like fashion and most of the information presented is considered to be well-known today, we will give hints for further reading at the end of each section instead of cluttering the text with citations.

As for Witten and Sander’s original publication and Meakin’s enhancements, refer to [1] and [3].

2 Some Mathematics

2.1 Why talk of fractal dimensionality?

A possible description of geometrical objects is their treatment as subsets of \mathbb{R}^n, e.g. for three-dimensional space consider a line, a square and a cube of length, area and volume (all of which we will refer to as generalized volumes hereafter) 1 respectively. It is straightforward to represent the line by $[0,1]$ whereas $[0,1]^2$ and $[0,1]^3$ do nicely for square and cube – intuitively, the volumes work out just as expected. One would now of course like to assign a volume to all possible sets and in fact do so for quite a lot – though not for all. This idea is extensively treated in measure theory.

However, while volume is an important aspect to classify geometric objects we would also like to introduce some notion of dimensionality. Clearly, line, square and cube should be of dimension 1, 2 and 3. For our example this can easily be achieved (up to the boundary) by resorting to topology and basically identify a set with a manifold which is locally equivalent to a vector space \mathbb{R}^m, where $m < n$, and call m the dimension of the set. Manifolds, while having a great deal of interesting properties, are hardly a typical example of arbitrary subsets of \mathbb{R}^n, though.

A more general approach, which works for any topological (sub-)space and thus trivially for any open subset of \mathbb{R}^n, is given by the Lebesgue covering dimension: If always some points of the set are contained in at least $n+1$ elements of an arbitrarily fine open cover, the set is of dimension n.

There is a bunch of other (non-equivalent) approaches to assign sets an integer which is called dimension and coincides with what one would expect for our examples and other ‘everyday objects’. However, at some point, quite another issue arises. As an example, consider the Koch curve (fig. 2), which starting with the interval $[0,1] \subset \mathbb{R}^2$ can be constructed as follows:

- divide the interval into three parts of equal length,
- replace the middle part by two parts of the same length which together with the removed part form an equilateral triangle,
- repeat these steps for each of the smaller parts.

The catch is this – what dimension do you want to assign to this set? It should probably be one dimensional. After all it has been constructed from
lines. But then again, its length is infinite (precisely $\lim_{n \to \infty} \left(\frac{4}{3}\right)^n$) whilst its extent is finite. Surely, such an object should cover some finite area. Unfortunately, the Koch curve being two-dimensional is clearly ruled out by our topological definition. In fact, the topological dimension of the Koch curve can easily be verified to be 1, which seems somewhat unfitting.

The Koch curve is just an example of many sets which can be defined using a so-called iterated function system (IFS): Given a set of affine functions which are contractive on the average, the set of points which is invariant under the action of the functions has similar properties as the Koch curve. Another famous set which can be constructed by an IFS is the Sierpinski triangle (fig. 3).

Alternatively, consider an infinite random walk in two dimensions. The resulting path is one dimensional by construction, but since every point in space has a finite probability of being reached, after an infinite number of steps, the whole space should be covered. So is the path one- or two-dimensional?

It turns out that it is a fruitful idea to resort the obvious, though unintuitive solution: define fractional dimensions. By constructions which will be discussed in a second, one can assign approximately the dimensions 1.26, 1.58, and 1.33 to the Koch curve, the Sierpinski triangle and the random walk respectively. They all are embedded in two-dimensional space, so their dimension has to be less than or equal to 2, and their topological dimension is 1, which serves as a lower boundary.

Structures of non-integer dimension are called fractals.

2.2 The fractal (Hausdorff) Dimension

One can put these observations on a firm mathematical footing by introducing the outer Hausdorff measure

$$H^d(S) = \inf_{\mathcal{S} \subset \bigcup_{i=1}^{\infty} U_i} \sum_{i=1}^{\infty} \text{diam}(U_i)^d$$

and define the Hausdorff dimension for a measurable set S as

$$d_H = \sup\{d \in \mathbb{R}^+ | H^d(S) = \infty\}.$$

While this looks rather intimidating at first sight, it boils down to the same idea which was behind the covering dimension, although being much more versatile and applicable to any set with a well-defined volume, which includes some rather pathological cases. Again, this is dealt with in greater detail in measure theory.

Fortunately, in well-behaved cases there is an easy implication. Note that we will not define the precise meaning of ‘well-behaved’. In general, however, fractals which can be constructed explicitly, e.g. by an IFS, tend to be ‘well-behaved’. The implication is this: Connected to the dimensionality of a set is a certain scaling behaviour concerning the number N of spheres of radius R covering the set, namely for $R \to 0$, $N \propto R^{-d_H}$. While this is just a reformulation of what we have already had before (provided spheres are suited as covering sets), writing it this way allows for further modification to yield a very useful expression:

$$d_H = -\lim_{R \to 0} \frac{\log N}{\log R}. \quad (1)$$

By this, you can easily confirm, that indeed, the dimension of the Koch curve is $\log 4 / \log 3 \approx 1.26$. The expected results for geometric primitives are also easily recoverable.
This scaling behaviour can be viewed as an illustration for the connection between fractal dimensionality and self-similarity. Self-similarity is a striking aspect of fractals and describes the fact that viewed on different scales, fractals look essentially the same. In the case of IFS fractals this similarity is exact. But there are as well true fractals with only approximate self-similarity, the most famous example probably being the Mandelbrot set.

2.3 Improper Fractals

Up to now we have only talked about sets the construction of which involved some limiting procedure. This is clearly not apt to describe natural phenomena which are always limited and finite. Nevertheless, when looking at the right scale, fractal characteristics may emerge. In terms of the example of dendritic growth discussed in the introduction, clearly it is neither useful to study the structure at the atomic scale, nor at a macroscopic one. But at a certain mesoscopic scale, the dendritic structure exhibits a large amount of self-similarity (fig. 4). Our immediate aim is therefore to further generalize our notion of fractal dimensionality to encompass these kinds of structures as well.

We can do so in a somewhat ad-hoc fashion: Again consider the minimal number of spheres of radius R, $N(R)$, required to cover the structure. But now, instead of taking the limit of a small radius, define the fractal dimension d at the scale given by R as

$$d(R) = -\frac{\log N(R)}{\log R}.$$

(2)

Note that this is almost identical to eq. 1. The value of d obtained by this concept is called box-counting dimension and it is not necessarily equal the Hausdorff dimension. In fact, in most cases it is not – remember that we are not talking about true fractals anymore. d becomes a meaningful quantity if it does not change (much) over the scales under consideration. This information is usually extracted from log-log-plots (fig. 5).

There are also other ways to determine the fractal dimension from scaling laws. In fact, one should rather call them methods to find a[sic!] fractal dimension, because just as with box-counting and Hausdorff, equivalences break down due to finite-size effects. Then again, there are some scaling laws which give approximately the right dimensionality (i.e. in accordance to other established recipes) for no good reason at all.

Two methods which are often applied in \mathbb{R}^n with Lebesgue metric and which will be particularly suited to our ends are

- $R_{gyr} \propto n^{1/d_n}$,
 where $R_{gyr} = \frac{1}{V} \left(\int_V d^n x p(x) (x - x_0)^2 \right)^{\frac{1}{2}}$ is the radius of gyration around the center of mass x_0, V the volume and $m = \int_V \rho$ the mass and
- $C(r) \propto r^{D-d}$,

where $C(r) = \rho \ast \rho$ is the density-density correlation (the convolution of the density with itself).

The density $\rho(x)$ is usually defined as 1 if x belongs to the fractal and 0 else.

Structures which exhibit a fractal-like scaling behaviour over certain ranges are common in nature. Typical examples include coast lines, veins and cracks.

Further Reading

The rough sketches of topology and measure theory can be reviewed in any decent book on advanced analysis. For a comprehensive introduction to fractal geometry, have a look at [7]. Different methods to measure the fractal dimension of finite structures can be found e.g. in [2] and [1].

3 Models

3.1 The Meakin Model

The Meakin model comprises two aspects: diffusion limited aggregation and number limited aggregation. Both deal with particles performing a random walk and sticking together on contact just like Witten and Sander proposed. In the case of diffusion limited aggregation (DLA), one follows the pattern

1. Create a single particle at the origin and call it the ‘cluster’ (seeding);
2. Create a new particle at a random position, uniformly chosen on the n-sphere with radius $r = r_C + 10$ particle diameters around the unweighted center of the cluster. r_C labels the ‘cluster radius’, which is defined as the minimum radius of an n-sphere which completely contains the whole cluster;
3. Let the new particle perform a random walk. It becomes part of the cluster in the instant they touch;

4. Go back to step 2.

Creating particles shortly beyond the cluster radius simulates diffusion from infinite distance, simply because at some point, that boundary has to be crossed. Outside this region, the influence of the internal structure of the cluster on the random walk trajectory is assumed to be negligible. To speed things up, particles have to be removed again if they wander too far from the cluster. Usually, a distance of $2r_C$ from the center of the cluster is chosen as a border beyond which particles are removed and a new one is created. This is discussed in more detail in the section on the implementation.

One of Meakin’s most important results is that the model can be maximally discretized without changing its properties. Here, maximum discretization means to perform the random walk on a lattice with a lattice spacing equal to the particle diameter. Two particles can be considered to be touching if they are located at nearest-neighbour lattice sites. Moreover, the particular choice of a lattice does not have measurable effects either. Therefore, all simulations can be performed on n-dimensional cubic lattices, which obviously is a huge advantage from the implementation point of view.

Meakin investigated the fractal dimension for embedding dimensions $D = 2$ to 6, mainly via radius of gyration and density-density-correlation, and came to the conclusion that very roughly $d_H = \frac{5}{6}D$. On a qualitative level, the resulting structures are approximately spherical and strongly dendritic, much like patterns of ice on a window. They can be seen in fig. 4.

Number limited aggregation consists of the following steps

1. Create a given number of particles on a lattice with periodic boundary conditions

2. Particles which touch are joined to clusters

3. Particles which touch clusters are added to them

4. Cluster which touch are merged

5. Move all particles and clusters randomly

6. Go back to step 2.

Optionally, clusters have a certain probability not to move which is proportional to the number of particles they consist of, thereby simulating ‘mass’. This results in net-like structures (fig. 6) with a fractal dimension of about 1.5 in 2-dimensional embedding space. Again, Meakin could not find discretization artifacts caused by the lattice.

3.2 The Eden-Meakin Model

In contrast to the Meakin model discussed before, the Eden-Meakin model is inspired by organic rather than...
inorganic processes. In 1961, M. Eden investigated the following growth model on a lattice:

1. Start with a single particle;
2. Add a particle at a random lattice site with a probability proportional to the number of its occupied neighbours;
3. Go back to step 2.

Unsurprisingly, what forms very much looks like a cell culture or a fungus. Eden asked the question: To what extend do random effects influence the development of biologic systems? Rephrased in a fancy way this is: Why do monozygotic twins have different finger prints? Eden’s approach was purely analytic (or combinatoric); he did some simulations, though rather as a last resort and without much enthusiasm. But then again, this was in 1961. When Meakin build his model of adaptive growth on top of Eden’s model in 1991, he took a purely numerical approach instead. The boundary of Eden’s cell culture had already been discovered to have a fractal dimension, but Meakin was interested in something different: He introduced a scoring system to determine, which cells (particles) are ‘important’ for the whole cluster and remove the irrelevant ones. This works as follows:

- Whenever a new particle is added, assign it an initial score of 0 and a ‘parent’, which is one of its neighbours (e.g. the one with the highest score or a random choice)
- The new particle and all of its ancestors (forming a unique chain back to the seed of the cluster) are awarded a score $\Delta S = (1 + l)^{-\eta}$, where l is the length of the chain and $\eta \in \mathbb{R}_+$ is a parameter
- Reduce the score of each particle in the cluster by $\frac{1}{N_m}$, $N_m \in \mathbb{N}$, and remove particles of negative score

Amazingly, a dendritic backbone of high-scored particles develops (fig. 7), which has a fractal dimension, the exact value of which depends on the cut-off score. There are other properties, however, which might be considered even more interesting.

First of all, the cluster only reaches a finite size. This is conceivable, because the larger it becomes, the more possibilities there are to add new particles and the smaller is the score a new particle is initially assigned. Therefore, new particles will be removed before they become parents to another particle themselves. Meakin gives a crude but easy estimate about the final size depending on η and N_m in his publication.

Secondly, the model is adaptive. The meaning of this can most easily be demonstrated by an example. Fig. 8 shows the number of particles in two clusters grown with different parameters. If the parameter sets are exchanged, the cluster sizes swap as well. The total score increases monotonically. This renders the cluster more passive towards changed over time and can be interpreted as a memory.
Third, the cluster has a memory. It can also be seen from fig. 8 that the total score of the clusters keeps on growing all the time. Because most of it is allotted to the backbone, it takes an increasingly large number of steps to remove a particle from it once conditions change. Another way to say this is that as parts of the cluster become older, they become less adaptive as well.

We can therefore safely state that the Eden-Meakin model has not only been inspired organically but also exhibits behaviour commonly attributed to living entities.

Further Reading Meakin’s inorganic models are presented in [3] and [4]. The original growth model suggested by M. Eden in 1961 is [5]. Meakin’s modifications are covered in [6].

4 trivial – a fractal growth toolkit

In our implementation of the above models we focussed on the following design goals, using object-oriented techniques:

Performance We have to make multiple runs to get sufficient statistics, so it is important that the programs generate large clusters in short times.

Genericness Because the models we are implementing are very similar it would be nice from a programmer’s point of view to have one basic implementation with pluggable components. Also we wanted to implement every model for every possible (metric) topology (dimension, boundary conditions, etc.) exactly once.

To unify both goals (which are actually quite contrary) we heavily relied on C++ templates. With a decent compiler (we used the current G++ version 4.5.2) this gives us the performance of hand-written C or C++ code (which we tried out first), while remaining very versatile. The library is still under development and we are going to implement some major changes described in the last section in the near future to make it even more useful.

In its current state the toolkit allows to implement the basic models described before in an arbitrary number of dimensions with 2 and 3-dimensional (anaglyphic) real-time visualization, extraction of statistical information during the growth process, and drawing of single images of 2-dimensional clusters. One can also plug in arbitrary random number generators, where in our calculations we always used the Mersenne Twister (MT 19937, see [8]). Number limited growth calculation in higher dimensions than 2 is not mentioned in any of the papers cited but is also possible with trivial.

The toolkit also enabled us to experiment with different setups, detailed in the last part of this section, which increases its practical use.

4.1 Details on the implementation

A typical trivial-program currently looks as follows:

```cpp
typedef meakin::sticky_particle<position<3>>
    particle_type;

typedef meakin::static_cluster<particle_type>
    cluster_type;

typedef meakin::diffusion_limited_updater<
    particle_type, cluster_type>
    updater_type;

typedef world<particle_type, cluster_type,
    updater_type> world_type;

gl_visitor<world_type> visitor;

world_type w;

for (int n = 0; n < 1e6; ++n)
{
    w.step();
    if (n % 100 == 0)
        w.accept(visitor);
}
```

This implements diffusion limited growth of a single static cluster in 3 dimensions which is visualised using OpenGL every hundredth step and terminates after the millionth.

As one can see from this, there are four major building blocks in our program:

1. The world Template
2. The Particle type
3. The Cluster type
4. The Updater type

Additionally there is the position type that completely defines our metric topology and is in this case just a 3-dimensional vector, and the visitor interface that allows us to get the current state of the world (here only to provide some visualisation, in actual programs maybe for statistics or loading and saving states).

The position type can be used to implement different kinds of lattices. Currently we have a simple position type for ‘infinite’ lattices that is used in the example above, and a periodic_position type, which implements periodic boundary conditions.

In the following we’ll look into the concepts of the basic building blocks and describe some of their provided implementations.

4.1.1 The world Template

This template class is the main interface to the toolkit. It has four template parameters, the basic Particle type it should use, the type of Clusters that get created when particles merge, and the Updater type, which handles creation and destruction of objects in each step. Additionally the type of the RandomNumberGenerator, which defaults to a Mersenne Twister in our case, is parameterised, which allows us to use different (i.e. faster) generators if necessary.

One can interact with objects of this class by calling the step-method, which calculates a complete time-step of the simulation, and using a Visitor interface. We use the latter to draw the current state of clusters and particles and to calculate statistics on them.
The step-method works as follows:

1. Update the particles and clusters using the provided Updater
2. Let one particle interact with each other and each cluster and see if they are going to be merged
 - If there are particles to be merged with the current one, merge them into a cluster (or create a new one), and remove them from world
 - Else move the particle in a random direction
3. Repeat the same for every particle
4. Repeat the same for every cluster-cluster combination

In this part we have only included some small optimisations to keep the code generic and instead relied on the compilers optimisation capabilities (for example removal of empty function calls if interact does nothing, and removal of empty loops).

4.1.2 The Particle

The particles are the most basic objects in our simulations. In the current version they consist merely of position information and for the Eden model of the rating of the particle. There is also a prototype of a Meakin implementation featuring Coulomb interaction, where the particles also carry charge information.

We would like to remove these objects as they are now soon because of limitations described in section 4.3.

4.1.3 The Cluster

Clusters are specialized containers of particles. To the outside they provide position and bounding information, which in the current implementation is always spherical. They can interact with each other and with particles, providing merging and movement information and also can be moved by themselves, where the merging is implemented by adding every particle of the other cluster one by one.

For the Meakin model our implementation is designed to implement the following methods to be at most of amortised constant runtime, respectively (for iterations) linear runtime:

Iterating over contained particles This is needed for fast interactions of clusters with other clusters and for statistic calculations

Position-based lookup This is also needed for cluster-cluster interactions and additionally for cluster-particle interactions, which have to check if there is a particle at a given position

Adding a particle Because the purpose of our clusters is to grow we obviously want it to grow fast

The first two points are contrary to each other. The first one suggests using a linear iterable container where particles carry their own position information, but that would result in a linear runtime for position-based lookup. On the other hand, the second point suggests using a position-indexed random access container with a special empty-entry, but that would result in a more-than-linear runtime for an iteration over all particles.

We thus concluded that we had to implement a multi-indexed container, effectively implementing both variants. The additional amount of memory required by the linear container is of no concern in this approach, because it grows linearly while the random-access container grows at least quadratically, depending on the dimensionality.

Because we did not want to limit the size of the cluster in any way beforehand, we implemented the linear container as an std::vector and the random-access container as an exponentially growing hypercube (see `hyper_cube.hpp`) with an overloaded indexer operator to allow easy position-based lookups. To model an empty cell in this local lattice we used the Boost.Optional library[9] and just left all empty cells uninitialised. A growth is initiated whenever a particle is to be added outside of this hypercube and is done by creating a new hypercube with two times the edge length of the previous one and then copying the old cube into the new one. This could be further optimised by using the linear container to fill the new cube and will be done in a future version.

We further optimised the has_particle_at-method by recalculating a bounding sphere in every addition of a particle that lies outside of the current sphere. Also, whenever the hypercube has to be resized it will grow around the center of this bounding sphere to fill it as dense as possible. In has_particle_at the bounding sphere is used to jump quickly out of the function if the particle is too far away from the center to touch the cluster.

For the Eden-Meakin model we currently do not have a dedicated cluster type (which could be a graph with weighted nodes or at least some optimisations regarding the boundary) but instead use a slightly specialized Meakin cluster that does the scoring in the add_particle-method. This gives decent performance to create usable results which is why we have not implemented an extra cluster yet.

4.1.4 Interactions

Currently every interaction is implemented as a set of overloads of the interact-function, that gets an additional state-parameter. This state is used in the main program loop to determine in which direction the object may move and if it is to be merged.

Probabilities for different directions are needed to implement a sticking-probability, because we have to prevent two objects that did not merge in the current step from moving into each other. They could do that if we were not careful, because we have no real lattice
but only objects that know their position themselves and are not indexed by it.

Furthermore, by changing the probabilities, forces acting on the particles can be simulated as discussed below.

4.1.5 The Updater

The Updater’s role is to prepare the environment in each step. In our implementation an Updater is a functor (in the C++ sense, meaning a callable object) that takes references to the containers of particles and clusters.

For the diffusion limited growth the updater first removes a particle if it is too far away from the cluster, we used the value of 2 times the radius of the cluster that is also used in Meakin’s paper. Too verify that this indeed does not change our measurements we plotted the dependence of the radius of gyration (which is our main statistical value) against this kill-radius in figure 9. One can see that from a deletion radius of 2 on the radius of gyration stays mostly constant.

Although we did not do enough runs on this to really prove this, those tries gave us enough evidence to believe Meakin.

4.1.6 Visitor Interface

Because we did not want to clutter the interface of world we implemented the Visitor pattern[10] as an entry point for both drawing and statistics facilities. In a later implementation the currently public methods get_particles and get_clusters will disappear and will be replaced by a more versatile interface.

We implemented real-time drawing in the beginning for debugging purposes, as it is easier to see if the growing works from an image than from raw data or plots. Currently only Meakin and Eden drawing are implemented, where the latter uses the current score of a particle to select a color from a scale. Because it was very difficult to see anything from the 3D renderings, we added an anaglyph drawer, which enabled us to see the fractal structure with red-cyan glasses. One of those renderings is seen in fig. 10.

Our statistics_visitor lets one plug different calculators together and outputs a header and data lines to a specified stream. The produced files where used for all our dimensionality calculations.

4.2 Examples

4.2.1 Higher statistics on DLA clusters

Limited by the computational resources available at his time, Meakin based his conclusions about the properties of diffusion limited aggregation on a handful of clusters. He used those to estimate their fractal dimension given by the radius of gyration and the density-density-correlation in 2- to 6-dimensional space and concluded $d \approx \frac{5}{2} D$ where D is the topological, i.e. here also the embedding, dimension. This is only a heuristic result, e.g. you can easily see that it does not hold for $D = 1$, where $d = 1$ as well. Additionally, there are strong fluctuations in dimensionality even for particle numbers as large as 10,000, so there is some uncertainty left.

Being unaware of any theoretical results for DLAs settling that issue, we checked Meakin’s results on 196 clusters in two and three dimensions up to 100,000 particles respectively. Care was taken to reduce autocorrelations: all growth processes were uniquely seeded and entered the statistics only once, i.e. a cluster with a final size of 50,000 particles has not been used as a cluster of 20,000 particles at some earlier stage of its development. Applying the radius of gyration method to determine the clusters’ dimensionality we obtained $d \pm \Delta d = 1.70 \pm 0.02$ for $D = 2$ and $d \pm \Delta d = 2.50 \pm 0.03$ for $D = 3$ in perfect accordance to Meakin’s results. Determining the dimension by the density-density-correlation can not be automated as easily, as the range in which it scales in a fractal fashion is less obvious. Nevertheless, it was checked by hand in about ten cases for each dimensionality giving no significant deviation from the values obtained via the radius of gyration, as already stated by Meakin.

Some seven-dimensional cluster have been grown, but since a particle has more possibilities to ‘walk around’ the cluster it takes significantly more time for it to hit, while it does not necessarily has to move far away from it where it would be killed. Although the results obtained are not statistically significant and may suffer from finite-size artifacts, they still do not rule out the ‘law of $\frac{5}{2}$’. The large fluctuations in fractal dimensionality Meakin observed at 10,000 particles, unfortunately do not decrease when going to clusters of 100,000 particles. It seems likely that this is not due to a finite-size effect, but rather an artifact inherent in the methods of measurement (radius of gyration and density-density-correlation). Remember – the structures are not true fractals in the mathematical sense.
Interestingly, our data cannot rule out that the fractal dimension d is in fact a random variable with expectation value of about $\frac{5}{6}D$ even in the limit $N \to \infty$. If this is correct, it is also a strong hint for the self-similarity and scaling properties discussed before.

4.2.2 Cluster diffusion

Instead of growing cluster from diffusing particles, one could as well grow a cluster from diffusing clusters. One could take several of cluster-diffusion-grown clusters to grow a higher-order cluster still. One could go on like this. Where is the point? Earlier, we have seen that the fractal dimension of a structure is connected to its scaling behaviour. If we now compose clusters from smaller clusters of a given size, we impose an additional scaling behaviour onto the system. In general, the overall dimension will result from the original, statistically induced scaling behaviour and this new one in some complicated way we do not want do investigate further here. Instead, we just grow 70 clusters by the following recipe:

- Build a cluster of n particles according to Meakin’s original model
- Take n of these cluster to assemble a new cluster
- Go on like this until the currently assembled cluster has more than 10,000 particles

Changing n from 5 to 50 in increments of 5, dimensions between 1.7 and 1.3 can be created. Moreover $\text{dim}(n)$ appears to be monotonic. Other than just the final size, the average coordination number remains unchanged. So we can change the fractal dimension while maintaining other properties. Most important, we could stay with our original growth principle of Brownian motion and adhesion, which, after all, has been physically motivated.

4.2.3 Dendrites

Dendrites, as commonly found in mineralogy, are fern-like structures on rocks. They are easily confused with plant fossils (dendron even is Greek for tree) although they are entirely inorganic in origin. Usually, they are formed by sedimenting metal oxides. In fact, this is the very process which inspired Witten and Sander in the first place. The important difference to the Meakin clusters we have discussed so far is that in this case there is a preferred orientation. In nature, it is induced by the flow of water carrying the sediments (and maybe to some extend also by the geometry of the rock, the seed in the language of the growth model). The Meakin model can be adapted to describe this process in the following straight-forward way:

- Create particles not uniformly on the n-sphere, but with a fixed x_0 coordinate. All other coordinates can be distributed uniformly.
- Increase the probability for stepping along the 0-direction in the random walk. The more probable it becomes, the stronger is the ‘flow’.
- Seed with a solid plane of particles perpendicular to the 0-direction not too close to where particles are created.

Depending on the strength of the ‘flow’, you can grow pine-like (strong) or bush-like (light) dendrites. The distribution of the other coordinates upon creation does not seem to have much influence as long as it is...
The creation of new particles shall still be continuous. Otherwise, several dendrites can be grown simultaneously. The influence of the seeding geometry has not been studied systematically, but we conjecture that apart from determining the initial position of the dendrite, it has no observable effect, because as with the original Meakin model new particles are nearly exclusively added to the outer regions of the dendrite. Other interesting modifications would be the introduction of vortices in the ‘flow’ or sticking probabilities. Some dendrites grown with this model at a high flow rate are displayed in fig. 11.

4.2.4 A Toy Model: Tubes

The idea of preferred directions and boundary conditions can also lead to quite a different set-up: By the techniques developed for dendrites, one can also model particles flowing through a tube. In this case, an n-dimensional tube shall be a hollow n-dimensional cuboid the 0-extend of which is much larger than all other. The direction of flow is chosen to be the 0-direction. Depending on the size of the tube, the flow rate and the incoming particle density, dendrites growing from the boundaries will at some point block the tube entirely. This is of course hardly a useful model to describe real world phenomena or even useful in engineering. One can, however, learn some things about the behaviour of the Meakin model if many free particles are involved. One non-obvious result is that the tube will stay clear of obstacles for a longer time if more particles are injected. This is because the higher the density, the more likely it is for middle-sized clusters to form during transport. According to the concept of mass introduced by Meakin, the probability for those cluster to touch the tube before leaving it, become smaller.

4.2.5 Growing towards the Sun

This final example is based on the Eden-Meakin model. Again, the basic idea is to introduce a preferred direction. Additionally, as we know of the adaptive nature of this particular model, we shall try to change the preferred direction over time. For the sake of concreteness let us attempt to model a plant growing towards to the sun. We will try to do so by only changing the scoring algorithm. The creation of new particles shall still be possible at each nearest-neighbour site. That way, we want to emulate the process of natural selection on a microbiological level. In altering the scoring procedure we have to take care not to create a situation in which a particle has a higher score than any of its ancestors because we do not want the cluster to be split. This leaves only a limited number of possibilities one of which is to introduce an additional factor for the chain score, such that \(\Delta S = \gamma(\vec{x})/(1 + l)^\eta \), where \(\vec{x} \) is the position of the new particle. Since our new scoring should somehow reflect the influence of the sun, seed the cluster at the origin and choose

\[
\gamma(\vec{x}) = \begin{cases} \frac{\vec{x} \cdot \hat{s}}{|\vec{x}|} & \text{if } x_0 > 0 \\ 0 & \text{if } x_0 \leq 0, \end{cases}
\]

where \(\hat{s} \) is a unit-vector pointing into the direction of the sun. This reflects the fact that sunlight reaches the earth essentially as parallel rays. The 0-direction is interpreted as the ‘up-direction’. It is known that the growth of plants is also crucially influenced by the direction of gravity, but we shall neglect that here and forbid growth downwards manually.

Fig. 12 depicts in 2 dimensions the extreme case, where the sun has been situated at \((0, 1)\) during the first 10,000 steps and at \((0, -1)\) afterwards. It can clearly be seen, how the plant follows the sun. The ‘old’ branches gradually degenerate because the sun never returns.

In a more sophisticated model, where the sun moves continuously, one encounters the following behaviour: depending on the rate of growth determined by the parameters \(\eta \) and \(N_m \), the plant follows the sun for a few ‘days’. At some point however, the memory effect described before inhibits a timely adaptation and the plant only ‘sees’ the average illumination becoming symmetric and time-invariant in the upper half-space. As with the original Eden-Meakin model, a stationary phase is reached. There also is another possible outcome: if the ‘night’ is too long, the plant may ‘die’, i.e. particles are removed. Again, due to the memory effect this will only happen during the first night or not at all.

Instead of only talking about living and dying plants, one could now implement some kind of scoring for a plant as a whole, describing its adaptivity with respect to environmental constraints. Together with an enlarged parameter set for the clusters, being determined by some genetic algorithm based on this scoring, one would obtain a toy-model of evolution.

While this is in a direct line with Eden’s original aims, we are now admittedly abandoning the realm of fractal growth – and so the scope of this text.

4.3 Limits of the Current Approach and Outlook

The current implementation has some drawbacks and unattractivenesses. A main problem are the interactions. For starters it is very complicated to implement
Figure 12: A tree is what one might see in this particularly scored Eden model. During the first 10,000 steps, the direction of the sun is \(\hat{s} = (0, 1) \) and \(\hat{s} = (0, -1) \) later (text).

additional interactions, like the Coulomb interaction. One has to overload interact three times with nearly identical code, which is quite unfortunate. It should also maybe be renamed to interact_with, because it handles the interaction of the first object with the second and is not symmetric.

A major drawback of our current approach is that we cannot define different boundaries for clusters. This would be very favorable for example for the Dendrites, because their natural boundary is not a sphere but rather the current height of the crystals. Also the tube model could be sped up with that.

Another smaller problem is the fact that we currently have not found a good method to ‘split’ clusters to model some kind of erosion, which would make the tube model far more useful. This could be helped by using a similar scoring algorithm as in the Eden-Meakin model. Still, finding out if a cluster is somehow ‘unstable’ is not an easy task.

To make the code less error-prone it would also be good to unify the interfaces of clusters and particles somehow, because the code of world::step is currently very repetitive and one has to see if position or get_center() has to be used. Also it is unpleasant that particles play a dual role, as carriers of charge or other interaction information on the one hand, which the also have when contained in clusters, and as a kind of ‘single-particle clusters’ on the other, which they only have as free particles.

To tackle all these problems we are going to define new, more general concepts. We will introduce concept ParticleContainer which roughly covers static_cluster and single_particle. All bounding calculations are to be done inside the object itself. Furthermore we will introduce Interaction, which defines all particle-state information (which is the value_type of ParticleContainer) and is chainable, so that we can for example add an electric charge to sticky particles.

This will enable us to streamline great amounts of our code and see how the fractals change when interactions are turned on.

Further Reading

Again, Meakin’s results on DLA are summarized in [3]. The Eden-Meakin model is based on [5] and [6]. A development version of trivial can freely be obtained from github.com as the repository comp.phys of filmor's. Please note that at the time of writing, it is still heavily under construction and some parts may not be functional or only implemented in a ‘hackish’ way.

5 Conclusion

Even 30 years after its advent, fractal growth still is an exciting topic and not completely understood. There are many links to other disciplines besides mathematics and physics, be it biology, engineering, computer science or art.

In fact, there is one additional striking feature about fractals in general: They are considered beautiful. We have seen that there is a deep connection between dimensionality and scaling laws, i.e. self-similarity. The question whether the perceived beauty of fractals is due to this special kind of symmetry (the human brain seeming to react to symmetry on a very fundamental level), or the perceived beauty of symmetries is due to fractals being a phenomenon common in nature remains for the reader to solve or maybe psychology.

References

[10] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley (1995)