Quantum Field Theory (physics 755)
Dozent: Ulf - G. Meißner and, Akaki Rusetsky
Vorlesung: Mi 10-12, Do 9-10, HS, HISKP
Exercise groups:
Mo. 12-14, SR I HISKP
Mo. 14-16, HS HISKP
Tue. 8-10, Ü6, Raum 0.022, AVZ I
We. 12-14, Seminarraum im Wolfgang-Paul Gebäude
Lectures:
1. Introduction: the necessity of the quantum field theory description of the relativistic systems
4. Symmetries and conservation laws
5. Quantization of a free scalar field
8. Interacting fields, discrete symmetries
11. Interpolating fields, S-matrix and cross sections
12. Examples: scattering amplitude
13. The two-point function of a scalar field at one loop
14. Classification of the divergences
17. Scattering in the external field; the magnetic moment of the electron
19. Analytic properties of the Feynman diagrams
20. Singularities in the perturbation theory. Landau equations
21. Singularities of the scattering amplitude
Exercises:
First exam: Tuesday, July 26, 10:00-13:00 in HS 1
Second exam: Friday, October 7, 9:00-12:00 in HS 1