Hadron Spectroscopy at the COMPASS Experiment

Boris Grube for the COMPASS Collaboration

Physik-Department E18 Technische Universität München, Garching, Germany

Kernphysikalisches Kolloquium HISKP Bonn, 05. June 2014

Outline

Introduction

- QCD and the constituent quark model
- Beyond the constituent quark model

2 How to measure meson spectra?

- Meson production in diffractive dissociation
- Partial-wave analysis method

3 Selected results

- Partial-wave decomposition of the $(3\pi)^-$ final state
- Resonance extraction in the $\pi^-\pi^+\pi^-$ system

Outline

1 Introduction

- QCD and the constituent quark model
- Beyond the constituent quark model

2 How to measure meson spectra?

- Meson production in diffractive dissociation
- Partial-wave analysis method

3 Selected results

- Partial-wave decomposition of the $(3\pi)^{-}$ final state
- Resonance extraction in the $\pi^-\pi^+\pi^-$ system

4 Conclusions and outlook

- Hadrons are made out of quarks and gluons
- Quantum chromodynamics (QCD) describes interaction of quark and gluon fields
 - Non-abelian gauge theory: gluons carry charge and self-interact

Phenomenon of confinement

- Quarks and gluons *do not* exist outside of hadrons
- Only composites reach detector

- Hadrons are made out of quarks and gluons
- Quantum chromodynamics (QCD) describes interaction of quark and gluon fields
 - Non-abelian gauge theory: gluons carry charge and self-interact

Phenomenon of confinement

- Quarks and gluons *do not* exist outside of hadrons
- Only composites reach detector

Hadrons and the Theory of Strong Interaction

Confinement still not understood

• One of 10 physics problems for the next millennium "Can we quantitatively understand quark and gluon confinement in Quantum Chromodynamics and the existence of a mass gap?"

Strings 2000, Int. J. Mod. Phys. A16 (2001) 1012

• One of seven \$1 000 000 Millenium Prize Problems "Yang-Mills existence and mass gap" Clay Mat

Clay Mathematics Institute

- Closely related to hadron masses
 - Only $\approx 2\%$ of proton mass explained by Higgs mechanism
 - 98% generated dynamically

Hadrons reflect workings of QCD at low energies

Measurement of **hadron spectra** and **hadron decays** gives valuable input to theory and phenomenology

Hadrons and the Theory of Strong Interaction

Confinement still not understood

• One of 10 physics problems for the next millennium "Can we quantitatively understand quark and gluon confinement in Quantum Chromodynamics and the existence of a mass gap?"

Strings 2000, Int. J. Mod. Phys. A16 (2001) 1012

• One of seven \$1 000 000 Millenium Prize Problems "Yang-Mills existence and mass gap" Clay Mat

Clay Mathematics Institute

- Closely related to hadron masses
 - Only $\approx 2\%$ of proton mass explained by Higgs mechanism
 - 98% generated dynamically

Hadrons reflect workings of QCD at low energies

Measurement of **hadron spectra** and **hadron decays** gives valuable input to theory and phenomenology

Mesons

• Color-singlet $|q\bar{q}'\rangle$ states, grouped into SU(*N*)_{flavor} multiplets

Spin-parity rules for bound $q\bar{q}$ system

Forbidden J^{PC}: 0⁻⁻⁻, 0⁺⁻⁻, 1⁻⁺, 2⁺⁻⁻, 3⁻⁺, ...
 Extension to charged mesons via G parity: G = C (-1)^I
 I incorption of meson

Mesons

• Color-singlet $|q\bar{q}'\rangle$ states, grouped into SU(*N*)_{flavor} multiplets

Spin-parity rules for bound $q\bar{q}$ system

- Quark spins couple to total intrinsic spin *S* = 0 or 1
- Relative orbital angular Momentum \vec{L} and total spin \vec{S} couple to meson spin $\vec{J} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L+1}$
- Charge conjugation $C = (-1)^{L+S}$
- Forbidden *J^{PC}*: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...
- Extension to charged mesons via *G* parity: $G = C (-1)^{I}$
 - *I* isospin of meson
 - Convention: assign [^{PC} quantum numbers of neutral partner state

Mesons

• Color-singlet $|q\bar{q}'\rangle$ states, grouped into SU(*N*)_{flavor} multiplets

Spin-parity rules for bound $q\bar{q}$ system

- Quark spins couple to total intrinsic spin *S* = 0 or 1
- Relative orbital angular Momentum \vec{L} and total spin \vec{S} couple to meson spin $\vec{J} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L+1}$
- Charge conjugation $C = (-1)^{L+S}$
- Forbidden J^{PC}: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...
- Extension to charged mesons via G parity: $G = C (-1)^{I}$
 - *I* isospin of meson

Convention: assign [^{PC} quantum numbers of neutral partner state

Mesons

• Color-singlet $|q\bar{q}'\rangle$ states, grouped into SU(*N*)_{flavor} multiplets

Spin-parity rules for bound $q\bar{q}$ system

- Quark spins couple to total intrinsic spin *S* = 0 or 1
- Relative orbital angular Momentum \vec{L} and total spin \vec{S} couple to meson spin $\vec{J} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L+1}$
- Charge conjugation $C = (-1)^{L+S}$
- Forbidden J^{PC}: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...
- Extension to charged mesons via *G* parity: $G = C (-1)^{I}$
 - I isospin of meson
 - Convention: assign J^{PC} quantum numbers of neutral partner state

COMPA

Quark-Model SU(3)_{flavor} Meson Nonets

Light-quark mesons

• u, d, and s quarks \implies SU(3)_{flavor} nonets

COMP

Quark-Model SU(3)_{flavor} Meson Nonets

Light-quark mesons

• u, d, and s quarks \implies SU(3)_{flavor} nonets

COMP

Constituent Quark Model

Light-quark Meson Spectrum

Amsler et al., Phys. Rept. 389 (2004) 61 COMPASS

Hadron Spectroscopy at

Boris Grube, TU München

Constituent Quark Model

Light-quark Meson Spectrum

Amsler et al., Phys. Rept. 389 (2004) 61

"Light-meson frontier"

- Many missing and disputed states in mass region
 m ≈ 2 GeV/*c*²
- Identification of higher excitations becomes exceedingly difficult
 - Wider states + higher state density
 - More overlap and mixing

Constituent Quark Model

Light-quark Meson Spectrum

Amsler et al., Phys. Rept. 389 (2004) 61

"Light-meson frontier"

- Many missing and disputed states in mass region
 m ≈ 2 GeV/*c*²
- Identification of higher excitations becomes exceedingly difficult
 - Wider states + higher state density
 - More overlap and mixing

Hadron Spectroscopy at √

COMPA

QCD: Gluonic field should manifest itself in hadron spectra

Hybrids $|q\bar{q}g\rangle$

- Resonances with excited gluonic fields
- Glue component contributes to quantum numbers
 All J^{PC} allowed
- Lightest predicted hybrid: spin-exotic J^{PC} = 1⁻⁴
 - Mass 1.3...2.2 GeV/c²
 - Experimental candidates $\pi_1(1400)$ and $\pi_1(1600)$ controversial

Glueballs |gg|

- Bound states with no valence quarks
- Lightest predicted glueball: ordinary J^{PC} = 0⁺⁺
 - Will strongly mix with nearby conventional I^{PC} = 0⁺⁺ states
 - Mass 1.5...2.0 GeV/c
 - Experimental candidate $f_0(1500)$; glueball interpretation disputed

QCD: Gluonic field should manifest itself in hadron spectra

Hybrids $|q\bar{q}g\rangle$

- Resonances with excited gluonic fields
- Glue component contributes to quantum numbers
 All J^{PC} allowed
- Lightest predicted hybrid: spin-exotic $J^{PC} = 1^{-+}$
 - Mass 1.3...2.2 GeV/c²
 - Experimental candidates $\pi_1(1400)$ and $\pi_1(1600)$ controversial

Glueballs |gg|

- Bound states with no valence quarks
- Lightest predicted glueball: ordinary J^{PC} = 0⁺⁺
 - Will strongly mix with nearby conventional J^{PC} = 0⁺⁺ states
 - Mass 1.5...2.0 GeV/c
 - Experimental candidate f₀(1500); glueball interpretation disputed

QCD: Gluonic field should manifest itself in hadron spectra

Hybrids $|q\bar{q}g\rangle$

- Resonances with excited gluonic fields
- Glue component contributes to quantum numbers
 All J^{PC} allowed
- Lightest predicted hybrid: spin-exotic $J^{PC} = 1^{-+}$
 - Mass 1.3 . . . 2.2 GeV/*c*²
 - Experimental candidates $\pi_1(1400)$ and $\pi_1(1600)$ controversial

Glueballs $|gg\rangle$

- Bound states with no valence quarks
- Lightest predicted glueball: ordinary J^{PC} = 0⁺⁺
 - Will strongly mix with nearby conventional J^{PC} = 0⁺⁺ states
 - Mass 1.5...2.0 GeV/c
 - Experimental candidate f₀(1500); glueball interpretation disputed

QCD: Gluonic field should manifest itself in hadron spectra

Hybrids $|q\bar{q}g\rangle$

- Resonances with excited gluonic fields
- Glue component contributes to quantum numbers
 All J^{PC} allowed
- Lightest predicted hybrid: spin-exotic $J^{PC} = 1^{-+}$
 - Mass 1.3 . . . 2.2 GeV/*c*²
 - Experimental candidates $\pi_1(1400)$ and $\pi_1(1600)$ controversial

Glueballs $|gg\rangle$

- Bound states with no valence quarks
- Lightest predicted glueball: ordinary $J^{PC} = 0^{++}$
 - Will strongly mix with nearby conventional $J^{PC} = 0^{++}$ states
 - Mass 1.5...2.0 GeV/c²
 - Experimental candidate *f*₀(1500); glueball interpretation disputed

QCD: Gluonic field should manifest itself in hadron spectra

Hybrids $|q\bar{q}g\rangle$

- Resonances with excited gluonic fields
- Glue component contributes to quantum numbers
 All J^{PC} allowed
- Lightest predicted hybrid: spin-exotic $J^{PC} = 1^{-+}$
 - Mass 1.3 . . . 2.2 GeV/*c*²
 - Experimental candidates $\pi_1(1400)$ and $\pi_1(1600)$ controversial

Glueballs $|gg\rangle$

- Bound states with no valence quarks
- Lightest predicted glueball: ordinary $J^{PC} = 0^{++}$
 - Will strongly mix with nearby conventional $J^{PC} = 0^{++}$ states
 - Mass 1.5...2.0 GeV/*c*²
 - Experimental candidate $f_0(1500)$; glueball interpretation disputed

QCD in the confinement regime: $\alpha_s = \mathcal{O}(1)$

• QCD Lagrangian not calculable using perturbation theory

- Simulation of QCD on finite discreet space-time lattice using Monte Carlo techniques
- Challenge: extrapolation to physical point
 - Heavier *u* and *d* quarks than in reality
 ⇒ extrapolation to physical quark masses
 - Extrapolation to infinite volume $L \rightarrow \infty$
 - Extrapolation to zero lattice spacing $a \rightarrow 0$
 - Rotational symmetry broken due to cubic lattice
- Tremendous progress in past years
 - Finer lattices: spin-identified spectra
 - Larger operator bases: many excited states
 - Access to gluonic content of calculated states

QCD in the confinement regime: $\alpha_s = \mathcal{O}(1)$

• QCD Lagrangian not calculable using perturbation theory

- Simulation of QCD on finite discreet space-time lattice using Monte Carlo techniques
- Challenge: extrapolation to physical point
 - Heavier *u* and *d* quarks than in reality
 - \implies extrapolation to physical quark masses
 - Extrapolation to infinite volume $L \rightarrow \circ$
 - Extrapolation to zero lattice spacing $a \rightarrow 0$
 - Rotational symmetry broken due to cubic lattice
- Tremendous progress in past years
 - Finer lattices: spin-identified spectra
 - Larger operator bases: many excited states
 - Access to gluonic content of calculated states

QCD in the confinement regime: $\alpha_s = \mathcal{O}(1)$

• QCD Lagrangian not calculable using perturbation theory

- Simulation of QCD on finite discreet space-time lattice using Monte Carlo techniques
- Challenge: extrapolation to physical point
 - Heavier *u* and *d* quarks than in reality
 - \implies extrapolation to physical quark masses
 - Extrapolation to infinite volume $L \rightarrow \infty$
 - Extrapolation to zero lattice spacing $a \rightarrow 0$
 - Rotational symmetry broken due to cubic lattice
- Tremendous progress in past years
 - Finer lattices: spin-identified spectra
 - Larger operator bases: many excited states
 - Access to gluonic content of calculated states

QCD in the confinement regime: $\alpha_s = \mathcal{O}(1)$

• QCD Lagrangian not calculable using perturbation theory

- Simulation of QCD on finite discreet space-time lattice using Monte Carlo techniques
- Challenge: extrapolation to physical point
 - Heavier *u* and *d* quarks than in reality
 - \implies extrapolation to physical quark masses
 - Extrapolation to infinite volume $L \rightarrow \infty$
 - Extrapolation to zero lattice spacing $a \rightarrow 0$
 - Rotational symmetry broken due to cubic lattice
- Tremendous progress in past years
 - Finer lattices: spin-identified spectra
 - Larger operator bases: many excited states
 - Access to gluonic content of calculated states

State-of-the-art I = 1 spectrum

Dudek et al., arXiv:1309.2608

State-of-the-art I = 1 spectrum

Dudek et al., arXiv:1309.2608

• Near-degeneracy patterns: qq̄ super-multiplets

State-of-the-art I = 1 spectrum

Dudek et al., arXiv:1309.2608

State-of-the-art I = 1 spectrum

Dudek et al., arXiv:1309.2608

- Lightest hybrid meson super-multiplet with $J^{PC} = 1^{+-}$ gluonic excitation
- Resonance widths and decay modes still very difficult

COMPAS

Finding states beyond the CQM is difficult

- Physical mesons = linear superpositions of all allowed basis states: |qq̄⟩, |qq̄g⟩, |gg⟩, |q²q̄²⟩,...
 - Amplitudes determined by QCD interactions
- Classification in quarkonia, hybrids, glueballs, tetraquarks, molecules, etc. assumes dominance of *one* basis state
 - In general "configuration mixing"
 - Disentanglement of contributions difficult

Special case: "exotic" mesons

- Have quantum numbers forbidden for $|q\bar{q}\rangle$
 - Discovery \implies unambiguous proof for meson states beyond CQM
- Especially attractive:

"spin-exotic" states with $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, .$

Finding states beyond the CQM is difficult

- Physical mesons = linear superpositions of *all* allowed basis states: |qq̄⟩, |qq̄g⟩, |gg⟩, |q²q̄²⟩,...
 - Amplitudes determined by QCD interactions
- Classification in quarkonia, hybrids, glueballs, tetraquarks, molecules, etc. assumes dominance of *one* basis state
 - In general "configuration mixing"
 - Disentanglement of contributions difficult

Special case: "exotic" mesons

- Have quantum numbers forbidden for $|q\bar{q}\rangle$
 - Discovery \implies unambiguous proof for meson states beyond CQM
- Especially attractive:

"spin-exotic" states with $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, .$

Hadron Spectroscopy a

Finding states beyond the CQM is difficult

- Physical mesons = linear superpositions of *all* allowed basis states: |qq̄⟩, |qq̄g⟩, |gg⟩, |q²q̄²⟩,...
 - Amplitudes determined by QCD interactions
- Classification in quarkonia, hybrids, glueballs, tetraquarks, molecules, etc. assumes dominance of *one* basis state
 - In general "configuration mixing"
 - Disentanglement of contributions difficult

Special case: "exotic" mesons

- Have quantum numbers forbidden for $|q\bar{q}\rangle$
 - Discovery \implies unambiguous proof for meson states beyond CQM
- Especially attractive:

"spin-exotic" states with $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \dots$

Hadron Spectroscopy a

QCD and Constituent Quark Model

• "Light meson frontier"

- Many missing and disputed excited states in mass region $m \approx 2 \text{ GeV}/c^2$
- QCD predicts states beyond CQM
 - Much richer hadron spectrum: exotic or supernumerous states
 - Mixing with conventional $|q\bar{q}'\rangle$ states of same J^{Pl}
 - Existence not yet proven

COMPASS

- lacksim Explores light-quark meson spectrum in region $m\gtrsim$ 2 GeV/ c^2
- Isearches for states that do not fit into CQM scheme
- Precision measurement of properties of known resonances

QCD and Constituent Quark Model

• "Light meson frontier"

- Many missing and disputed excited states in mass region $m \approx 2 \text{ GeV}/c^2$
- QCD predicts states beyond CQM
 - Much richer hadron spectrum: exotic or supernumerous states
 - Mixing with conventional $|q\bar{q}'\rangle$ states of same J^{PC}
 - Existence not yet proven

COMPASS

- lacksim Explores light-quark meson spectrum in region $m\gtrsim$ 2 GeV/ c^2
- Searches for states that do not fit into CQM scheme
- Precision measurement of properties of known resonances

QCD and Constituent Quark Model

• "Light meson frontier"

- Many missing and disputed excited states in mass region $m \approx 2 \text{ GeV}/c^2$
- QCD predicts states beyond CQM
 - Much richer hadron spectrum: exotic or supernumerous states
 - Mixing with conventional $|q\bar{q}'\rangle$ states of same J^{PC}
 - Existence not yet proven

COMPASS

- Explores light-quark meson spectrum in region $m \gtrsim 2 \text{ GeV}/c^2$
- Searches for states that do not fit into CQM scheme
- Precision measurement of properties of known resonances

Outline

Introduction

- QCD and the constituent quark model
- Beyond the constituent quark model

2 How to measure meson spectra?

- Meson production in diffractive dissociation
- Partial-wave analysis method

³ Selected results

- Partial-wave decomposition of the $(3\pi)^-$ final state
- Resonance extraction in the $\pi^-\pi^+\pi^-$ system

Conclusions and outlook
The COMPASS Experiment at the CERN SPS

Experimental Setup

NIM A 577, 455 (2007)

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

The COMPASS Experiment at the CERN SPS

Experimental Setup

NIM A 577, 455 (2007)

Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

RPD + Target

2008-09, 2012

COMPAS

• 190 GeV/*c* secondary hadron beams

E/HCAL2

• h^- beam: 97 % π^- , 2 % K^- , 1 % \bar{p}

E/HCAL1

- *h*⁺ beam: 75 % *p*, 24 % π⁺, 1 % *K*⁺
- Various targets: *l***H**₂, Ni, Pb, W
- > 1 PByte of data per year

Boris Grube, TU München

Beam

- Soft scattering of beam particle off target via strong interaction
 - Production of *n* forward-going hadrons (here n = 3)
 - Target particle stays intact
- All final-state particles are measured

- Beam particle gets excited into intermediate resonance *X*
- X decays (dissociates) into *n*-body final state (here *n* = 3)
- Rich spectrum of intermediate states *X*

- Beam particle gets excited into intermediate resonance *X*
- *X* decays (dissociates) into *n*-body final state (here *n* = 3)
- Rich spectrum of intermediate states *X*

Example: $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$

19

Diffractive dissociation

- Many different intermediate states X decaying into same final state
- Intermediate states interfere

Goal: find all resonances

• Determine their mass, width, and quantum numbers

Method: partial-wave analysis (PWA)

- Uses full kinematic information in events
- Amplitude analysis: exploits interference of intermediate states
 - Additional phase information
 - Greatly helps to disentangle states

Diffractive dissociation

- Many different intermediate states X decaying into same final state
- Intermediate states interfere

Goal: find all resonances

• Determine their mass, width, and quantum numbers

Method: partial-wave analysis (PWA)

- Uses full kinematic information in events
- Amplitude analysis: exploits interference of intermediate states
 - Additional phase information
 - Greatly helps to disentangle states

Diffractive dissociation

- Many different intermediate states X decaying into same final state
- Intermediate states interfere

Goal: find all resonances

• Determine their mass, width, and quantum numbers

Method: partial-wave analysis (PWA)

- Uses full kinematic information in events
- Amplitude analysis: exploits interference of intermediate states
 - Additional phase information
 - Greatly helps to disentangle states

... or: From Bump Hunting to Amplitude Analysis

Analogy: phase-contrast imaging

X-ray attenuation image

"Bump hunting'

M. Bech et al., Sci. Rep. 3 (2013) 3209

X-ray phase-contrast image

"Amplitude Analysis"

COMPA

... or: From Bump Hunting to Amplitude Analysis

Analogy: phase-contrast imaging

X-ray attenuation image

"Bump hunting"

M. Bech et al., Sci. Rep. 3 (2013) 3209

X-ray phase-contrast image

"Amplitude Analysis"

COMPASS

... or: From Bump Hunting to Amplitude Analysis

Analogy: phase-contrast imaging

X-ray attenuation image

"Bump hunting"

M. Bech et al., Sci. Rep. 3 (2013) 3209

X-ray phase-contrast image

"Amplitude Analysis"

... or: From Bump Hunting to Amplitude Analysis

Peters, arxiv:hep-ph/0412069

• Resonance lies on unitarity circle

- Elastic case
- "Phase motion": δ rises from 0 to π and is $\pi/2$ at peak position
 - Analogous to mechanical oscillator

COMP

 X^- does *not* decay directly into $\pi^-\pi^+\pi$

Boris Grube, TU München

COMPAS

 X^- does *not* decay directly into $\pi^-\pi^+\pi^-$

 X^- does *not* decay directly into $\pi^-\pi^+\pi^-$

 X^- does *not* decay directly into $\pi^-\pi^+\pi^-$

Isobar model

- X⁻ decays via intermediate π⁺π⁻ resonance = "isobar"
 - $[\pi\pi]_{\text{S-wave}}$ $J^{PC} = 0^{+-}$
 - $\rho(770)$
 - $f_0(980)$ 0++
 - $f_2(1270)$
 - $f_0(1500)$
 - ρ₃(1690)

Isobar model

- X^- decays via intermediate $\pi^+\pi^-$ resonance = "isobar"
 - $[\pi\pi]_{\text{S-wave}}$ $J^{PC} = 0^{+1}$
 - $\rho(770)$
 - $f_0(980)$ 0++
 - $f_2(1270)$
 - $f_0(1500)$
 - ρ₃(1690)

Isobar model

- Isobar has spin *S* and relative orbital angular momentum *L* w.r.t. bachelor π^-
 - *L* and *S* couple to spin *J* of *X*⁻
- "Wave" = unique combination of isobar and quantum numbers
- Notation: $J^{PC} M^{\epsilon}$ isobar πL
- 3-body kinematics fixed by m_X plus 5 phase space variables τ
- Decay amplitude $A_{wave}(m_X, \tau)$
 - Describes τ distribution for given wave \implies Calculable!

Isobar model

- Isobar has spin *S* and relative orbital angular momentum *L* w.r.t. bachelor π^-
 - *L* and *S* couple to spin *J* of *X*⁻
- "Wave" = unique combination of isobar and quantum numbers
- Notation: $J^{PC} M^{\epsilon}$ isobar πL
- 3-body kinematics fixed by m_X plus 5 phase space variables τ
- **Decay amplitude** $A_{wave}(m_X, \tau)$
 - Describes τ distribution for given wave \implies Calculable!

Example: angular distribution for $2^{-+} 1^+ f_2(1270) \pi D$ wave

• 2D projections of a genuine 5D distribution ($m_X = \text{const.}$)

- f_2 and π^- in relative *D*-wave
- $f_2(1270)$: $J^P = 2^+ \implies \pi^+\pi^-$ in relative *D*-wave

COMPA

Isobar model

- *Ansatz*: Production of *X* is independent of its decay
 - Production described by amplitudes $T_{wave}(m_X)$
 - Strength and relative phase of partial wave
 - Total amplitude of a wave is $T_{wave}(m_X) A_{wave}(\tau; m_X)$
- Many waves contribute
 - Same final state \implies amplitudes have to be summed coherently
- Intensity: $\mathcal{I}(\tau; m_X) = \left| \sum_{\text{waves}} T_{\text{wave}}(m_X) A_{\text{wave}}(\tau; m_X) \right|^2$

• Model for τ distribution with unknown parameters $T_{wave}(m_X)$

COMPAS

Isobar model

- *Ansatz*: Production of *X* is independent of its decay
 - Production described by amplitudes $T_{wave}(m_X)$
 - Strength and relative phase of partial wave
 - Total amplitude of a wave is $T_{wave}(m_X) A_{wave}(\tau; m_X)$
- Many waves contribute
 - Same final state \implies amplitudes have to be summed coherently

• Intensity:
$$\mathcal{I}(\tau; m_X) = \left| \sum_{\text{waves}} T_{\text{wave}}(m_X) A_{\text{wave}}(\tau; m_X) \right|^2$$

• Model for τ distribution with unknown parameters $T_{wave}(m_X)$

COMPA

Isobar model: spin-parity decomposition

• Intensity:
$$\mathcal{I}(\tau; m_X) = \left| \sum_{\text{waves}} T_{\text{wave}}(m_X) A_{\text{wave}}(\tau; m_X) \right|$$

Determination of T_{wave}(m_X)

(1) Bin data in m_X

- Neglect m_X dependence within mass bin
- No assumptions about 3π resonances

2 Maximum likelihood fit of 5-dimensional au distribution in each m_X

- Takes into account detector acceptance and efficiency
- Decomposition into (nearly) orthonormal function system $\{A_{wave}(\tau)\}$

COMP

2

Isobar model: spin-parity decomposition

• Intensity:
$$\mathcal{I}(\tau; m_X) = \left| \sum_{\text{waves}} T_{\text{wave}}(m_X) A_{\text{wave}}(\tau; m_X) \right|$$

- Determination of $T_{wave}(m_X)$
 - Bin data in m_X
 - Neglect *m_X* dependence within mass bin
 - No assumptions about 3π resonances

2 Maximum likelihood fit of 5-dimensional au distribution in each m_X

- Takes into account detector acceptance and efficiency
- Decomposition into (nearly) orthonormal function system $\{A_{wave}(\tau)\}$

2

Truncation of the Partial-Wave Series

• Intensity:
$$\mathcal{I}(\tau; m_X) = \left| \sum_{\text{waves}}^{\infty} T_{\text{wave}}(m_X) A_{\text{wave}}(\tau; m_X) \right|$$

- In principle infinitely many partial waves
 - All allowed isobars and orbital angular momentum values
- Limited amount of data \implies truncate series
 - Dominant isobars determined from kinematic distributions of isobar subsystems (e.g. $m_{\pi^+\pi^-}$ distribution)
 - Selection of waves based on physics and experience
 - Iterative optimization process

Wave set used for analysis of 3π data

- 87 waves + incoherent isotropic background ("flat") wave
 - By far the largest wave set ever used for this channel
 - Spin J up to 6
 - Orbital angular momentum L up to 6
 - Isobars: $(\pi\pi)_S$, $f_0(980)$, $\rho(770)$, $f_2(1270)$, $f_0(1500)$ and $\rho_3(1690)$

Truncation of the Partial-Wave Series

• Intensity:
$$\mathcal{I}(\tau; m_X) = \left| \sum_{\text{waves}}^{\infty} T_{\text{wave}}(m_X) A_{\text{wave}}(\tau; m_X) \right|$$

- In principle infinitely many partial waves
 - All allowed isobars and orbital angular momentum values
- Limited amount of data \implies truncate series
 - Dominant isobars determined from kinematic distributions of isobar subsystems (e.g. $m_{\pi^+\pi^-}$ distribution)
 - Selection of waves based on physics and experience
 - Iterative optimization process

Wave set used for analysis of 3π data

- 87 waves + incoherent isotropic background ("flat") wave
 - By far the largest wave set ever used for this channel
 - Spin J up to 6
 - Orbital angular momentum L up to 6
 - Isobars: $(\pi\pi)_{S}$, $f_0(980)$, $\rho(770)$, $f_2(1270)$, $f_0(1500)$ and $\rho_3(1690)$

COMPA

Outline

Introduction

- QCD and the constituent quark model
- Beyond the constituent quark model

2 How to measure meson spectra?

- Meson production in diffractive dissociation
- Partial-wave analysis method

3 Selected results

- Partial-wave decomposition of the $(3\pi)^-$ final state
- Resonance extraction in the $\pi^-\pi^+\pi^-$ system

4 Conclusions and outlook

PWA of $\pi^- p ightarrow (3\pi)^- p_{\text{recoil}}$: Data Sets

$pprox 50\cdot 10^{\overline{6}}$ exclusive $\pi^-\pi^+\pi^-$ events

- World's largest $\pi^-\pi^+\pi^-$ data set by far
- Kinematic range $0.1 < t' < 1.0 \, (\text{GeV/}c)^2$
- Challenging analysis
 - Requires large computing resources
 - Needs precise understanding of apparatus
 - Systematics larger than statistical uncertainties

Crosscheck systematics using $\pi^-\pi^0\pi^0$ events

- 3.5 M exclusive events
- Very different acceptance
- Isobars separated by isospin
 - I = 1 isobars: $\pi^- \pi^-$
 - I = 0 isobars: $\pi^0 \pi^0$

PWA of $\pi^- p ightarrow (3\pi)^- p_{\text{recoil}}$: Data Sets

$pprox 50\cdot 10^{\overline{6}}$ exclusive $\pi^-\pi^+\pi^-$ events

- World's largest $\pi^-\pi^+\pi^-$ data set by far
- Kinematic range $0.1 < t' < 1.0 \, (\text{GeV/}c)^2$
- Challenging analysis
 - Requires large computing resources
 - Needs precise understanding of apparatus
 - Systematics larger than statistical uncertainties

Crosscheck systematics using $\pi^-\pi^0\pi^0$ events

- 3.5 M exclusive events
- Very different acceptance
- Isobars separated by isospin
 - I = 1 isobars: $\pi^- \pi^0$
 - I = 0 isobars: $\pi^0 \pi^0$

PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$: A Complication

- 3π invariant mass spectrum depends on t'
 - Partial waves have different t' dependencies
- t' spectrum depends on 3π invariant mass
- Modeling of *t*['] dependence difficult
- Avoid model bias by binning data in t' and $m_{3\pi}$

COMPAS

PWA of $\pi^- p ightarrow (3\pi)^- p_{\text{recoil}}$: A Complication

- 3π invariant mass spectrum depends on t'
 - Partial waves have different *t*′ dependencies
- t' spectrum depends on 3π invariant mass
- Modeling of *t*′ dependence difficult
- Avoid model bias by binning data in t' and $m_{3\pi}$
 - 11 t' bins for $\pi^-\pi^+\pi^-$ and 8 t' bins for $\pi^-\pi^0\pi^0$

PWA of $\pi^- p ightarrow (3\pi)^- p_{\text{recoil}}$: A Complication

- 3π invariant mass spectrum depends on t'
 - Partial waves have different *t*′ dependencies
- t' spectrum depends on 3π invariant mass
- Modeling of *t*′ dependence difficult
- Avoid model bias by binning data in t' and $m_{3\pi}$
 - 11 t' bins for $\pi^-\pi^+\pi^-$ and 8 t' bins for $\pi^-\pi^0\pi^0$

 $\pi^{-}\pi^{0}\pi^{0}$ $\pi^{-}\pi^{+}\pi^{-}$ scaled for each plot

PWA of $\pi^- p ightarrow (3\pi)^- p_{\text{recoil}}$: Low t' vs. High t'

Hadron Spectroscopy at

PWA of $\pi^- p ightarrow (3\pi)^- p_{\text{recoil}}$: Low t' vs. High t'

Boris Grube, TU München

PWA of $\pi^- p ightarrow (3\pi)^- p_{\mathsf{recoil}}$: Selected Small Waves

 $\pi^{-}\pi^{0}\pi^{0}$ $\pi^{-}\pi^{+}\pi^{-}$ scaled for each plot

PWA of $\pi^- p ightarrow (3\pi)^- p_{\mathsf{recoil}}$: Selected Small Waves

 $\pi^{-}\pi^{0}\pi^{0}$ $\pi^{-}\pi^{+}\pi^{-}$ scaled for each plot

PWA of $\pi^- p ightarrow (3\pi)^- p_{\text{recoil}}$: Selected Small Waves

PWA of $\pi^- p ightarrow (3\pi)^- p_{\text{recoil}}$: 1^{-+} Spin-Exotic Wave

PWA of $\pi^- p ightarrow (3\pi)^- p_{ m recoil}$: 1^{-+} Spin-Exotic Wave

- Broad intensity bump
- Similar in both channels
- Strong modulation with *t*′

• Slow phase motion in all *t*' bins

 $\pi^{-}\pi^{+}\pi^{-}$ data Deck MC scaled to t'-integrated intensity

PWA of $\pi^- p ightarrow (3\pi)^- p_{\mathsf{recoil}}$: 1^{-+} Spin-Exotic Wave

$1^{-+} 1^+ \rho \pi P$

- Broad intensity bump
- Similar in both channels
- Strong modulation with *t*′
- Slow phase motion in all *t*' bins

 $\pi^{-}\pi^{+}\pi^{-}$ data Deck MC scaled to t'-integrated intensity

PWA of $\pi^- p ightarrow (3\pi)^- p_{ m recoil}$: 1^{-+} Spin-Exotic Wave

- Broad intensity bump
- Similar in both channels
- Strong modulation with *t*′

• Slow phase motion in all *t*' bins

 $\pi^{-}\pi^{+}\pi^{-}$ data Deck MC scaled to t'-integrated intensity

PWA of $\pi^- p ightarrow (3\pi)^- p_{ m recoil}$: 1^{-+} Spin-Exotic Wave

$1^{-+}\,1^+\,\rho\pi P$

- Broad intensity bump
- Similar in both channels
- Strong modulation with *t*′
- Slow phase motion in all *t*′ bins

 $\pi p \rightarrow \pi \pi \pi^+ p$ (COMPASS 2008)

Extraction of resonance parameters

- Model mass dependence of subset of 6 partial waves
 - $\begin{array}{lll} \bullet & 1^{++} \bullet^{+} \rho \pi S & a_{1}(1260) & + a_{1}' \\ \bullet & 2^{++} 1^{+} \rho \pi D & a_{2}(1320) & + a_{2}' \\ \bullet & 2^{-+} \bullet^{+} f_{2} \pi S & \pi_{2}(1670) & + \pi_{2}(1880) \\ \bullet & 4^{++} 1^{+} \rho \pi G & a_{4}(2040) \\ \bullet & 0^{-+} \bullet^{+} f_{0}(980) \pi S & \pi(1800) \\ \bullet & 1^{++} \bullet^{+} f_{0}(980) \pi P & a_{1}(1420) \end{array}$
 - Resonances: relativistic Breit-Wigner amplitudes
 - Coherent non-resonant term in each wave: phenomenological parametrization
 - Parameters estimation by χ^2 fit

Novel method: Combined fit of all t' bins

- Same resonance parameters in each t' bin
- Improves separation of resonant and non-resonant contributions

Extraction of resonance parameters

- Model mass dependence of subset of 6 partial waves
 - $\begin{array}{lll} \bullet & 1^{++} \bullet^{+} \rho \pi S & a_{1}(1260) & + a_{1}' \\ \bullet & 2^{++} 1^{+} \rho \pi D & a_{2}(1320) & + a_{2}' \\ \bullet & 2^{-+} \bullet^{+} f_{2} \pi S & \pi_{2}(1670) & + \pi_{2}(1880) \\ \bullet & 4^{++} 1^{+} \rho \pi G & a_{4}(2040) \\ \bullet & 0^{-+} \bullet^{+} f_{0}(980) \pi S & \pi(1800) \\ \bullet & 1^{++} \bullet^{+} f_{0}(980) \pi P & a_{1}(1420) \end{array}$
 - Resonances: relativistic Breit-Wigner amplitudes
 - Coherent non-resonant term in each wave: phenomenological parametrization
 - Parameters estimation by χ^2 fit

Novel method: Combined fit of all t' bins

- Same resonance parameters in each *t*' bin
- Improves separation of resonant and non-resonant contributions

 $a_2(1320)$ parameters • $m = 1312 - 1315 \text{ MeV}/c^2$ • $\Gamma = 108-115 \text{ MeV}/c^2$ Cf. PDG 2012 • $m = 1318.3^{+0.5}_{-0.6} \text{ MeV}/c^2$ • $\Gamma = 107 \pm 5 \text{ MeV}/c^2$

 $2^{++}1^+\rho\pi D$

• $m = 1740 - 1890 \text{ MeV}/c^2$

• $\Gamma = 300 - 555 \text{ MeV}/c^2$

- $m = 1732 \pm 16 \text{ MeV}/c^2$
- $\Gamma = 194 \pm 40 \text{ MeV}/c^2$

Hadron Spectroscopy a

• $\Gamma = 107 \pm 5 \text{ MeV}/c^2$ a_2' parameters • $m = 1740 - 1890 \text{ MeV}/c^2$

• $m = 1312 - 1315 \text{ MeV}/c^2$ • $\Gamma = 108-115 \text{ MeV}/c^2$

• $m = 1318.3^{+0.5}_{-0.6} \text{ MeV}/c^2$

 $2^{++}1^+ \rho \pi D$

Cf. PDG 2012

 $a_2(1320)$ parameters

• $\Gamma = 300-555 \text{ MeV}/c^2$

cf. PDG 2012 "omitted from summary": $a_2(1700)$

- $m = 1732 \pm 16 \text{ MeV}/c^2$
- $\Gamma = 194 \pm 40 \text{ MeV}/c^2$

Hadron Spectroscopy a

1⁺⁺ 0⁺ $\rho \pi S$ *a*₁(1260) parameters • *m* = 1260-1290 MeV/*c*² • Γ = 360-420 MeV/*c*² Cf. PDG 2012 • *m* = 1230 ± 40 MeV/*c*² • Γ = 250-400 MeV/*c*²

 i_1' parameters

• $m = 1920 - 2000 \text{ MeV}/c^2$

• $\Gamma = 155 - 255 \text{ MeV}/c^2$

cf. PDG 2012 "further states": 41(1930)

- $m = 1930^{+30}_{-70} \text{ MeV}/c^2$
- $\Gamma = 155 \pm 45 \text{ MeV}/c^2$

Hadron Spectroscopy at

 $1^{++} 0^{+} \rho \pi S$ $a_1(1260)$ parameters • $m = 1260-1290 \text{ MeV}/c^2$ • $\Gamma = 360-420 \text{ MeV}/c^2$ Cf. PDG 2012 • $m = 1230 \pm 40 \text{ MeV}/c^2$ • $\Gamma = 250-400 \text{ MeV}/c^2$

- a_1' parameters
 - $m = 1920 2000 \text{ MeV}/c^2$
 - $\Gamma = 155 255 \text{ MeV}/c^2$

cf. PDG 2012 "further states": $a_1(1930)$

- $m = 1930^{+30}_{-70} \text{ MeV/}c^2$
- $\Gamma = 155 \pm 45 \text{ MeV}/c^2$

Hadron Spectroscopy a

 $1^{++} 0^{+} f_{0}(980) \pi P$

 $a_1(1420)$ parameters

- $m = 1412 \cdot 1422 \text{ MeV}/c^2$
- $\Gamma = 130-150 \text{ MeV}/c^2$

Not in PDG

Hadron Spectroscopy a

Relative Phases of $1^{++} 0^+ f_0(980) \pi P$ Partial Wave

Significant phase motion w.r.t.

- $1^{++} 0^+ \rho \pi S$
- 2⁺⁺ 1⁺ ρπD
 2⁻⁺ 0⁺ f₂πS
- $4^{++} 1^+ \rho \pi G$

Consistent with Breit-Wigner resonance

Relative Phases of $1^{++} 0^+ f_0(980) \pi P$ Partial Wave

Significant phase motion w.r.t.

- $1^{++} 0^+ \rho \pi S$
- $2^{++}1^+\rho\pi D$

• $2^{-+} 0^+ f_2 \pi S$

Consistent with Breit-Wigner resonance

Relative Phases of $1^{++} 0^+ f_0(980) \pi P$ Partial Wave

Significant phase motion w.r.t.

- $1^{++} \, 0^+ \, \rho \pi S$
- $2^{++} 1^+ \rho \pi D$
- $2^{-+} 0^+ f_2 \pi S$
- $4^{++} 1^+ \rho \pi G$

Consistent with Breit-Wigner resonance

System (GeV/c

Relative Phases of $1^{++} 0^+ f_0(980) \pi P$ Partial Wave

Significant phase motion w.r.t.

- $1^{++} \, 0^+ \, \rho \pi S$
- $2^{++} 1^+ \rho \pi D$
- $2^{-+} 0^+ f_2 \pi S$
- $\bullet \ 4^{++} \ 1^+ \ \rho \pi G$

Consistent with Breit-Wigner resonance

Hadron Spectroscopy at

Relative Phases of $1^{++} 0^+ f_0(980) \pi P$ Partial Wave

Significant phase motion w.r.t.

- $1^{++} \, 0^+ \, \rho \pi S$
- $2^{++} 1^+ \rho \pi D$
- $2^{-+} 0^+ f_2 \pi S$
- $\bullet \ 4^{++} \ 1^+ \ \rho \pi G$

Consistent with Breit-Wigner resonance

Hadron Spectroscopy at

Outline

Introduction

- QCD and the constituent quark model
- Beyond the constituent quark model

2 How to measure meson spectra?

- Meson production in diffractive dissociation
- Partial-wave analysis method

3 Selected results

- Partial-wave decomposition of the $(3\pi)^-$ final state
- Resonance extraction in the $\pi^-\pi^+\pi^-$ system

Conclusions and outlook

World's largest $\pi^-\pi^+\pi^-$ data set

- Crosscheck systematics with $\pi^-\pi^0\pi^0$ data
- Novel analysis scheme: binning in t'
 - Better separation of resonant and non-resonant contribution
- Determination of resonance parameters still work in progress
 - Limited by systematics
 - Improved models needed
 - Better parametrization of non-resonant contribution
 - Future: include more partial waves in mass-dependent fit
 - Better contraint parameters of excited states
 - Extraction of branching fractions

Conclusions and Outlook

New state $a_1(1420)$ seen in $f_0(980)\pi$ decay mode

- $m = 1412-1422 \text{ MeV}/c^2$, $\Gamma = 130-150 \text{ MeV}/c^2$
- No quark-model states expected in this mass region
- Pronounced phase motion w.r.t. to other waves

Nature of $a_1(1420)$ still unclear

- Close to $K^*(892) \overline{K}$ threshold
- Isospin partner of $f_1(1420)$?
- Coupled-channel effect with $a_1(1260) \rightarrow K^*(892) \overline{K} \rightarrow f_0(980) \pi$?

• ...?

Broad intensity bump in spin-exotic $1^{-+} 1^+ \rho \pi P$ wave

• Resonance interpretation work in progress

Conclusions and Outlook

New state $a_1(1420)$ seen in $f_0(980)\pi$ decay mode

- $m = 1412-1422 \text{ MeV}/c^2$, $\Gamma = 130-150 \text{ MeV}/c^2$
- No quark-model states expected in this mass region
- Pronounced phase motion w.r.t. to other waves

Nature of $a_1(1420)$ still unclear

- Close to $K^*(892) \overline{K}$ threshold
- Isospin partner of $f_1(1420)$?
- Coupled-channel effect with $a_1(1260) \rightarrow K^*(892) \overline{K} \rightarrow f_0(980) \pi$?
- ...?

Broad intensity bump in spin-exotic $1^{-+} 1^+ \rho \pi P$ wave

• Resonance interpretation work in progress

Conclusions and Outlook

New state $a_1(1420)$ seen in $f_0(980)\pi$ decay mode

- $m = 1412-1422 \text{ MeV}/c^2$, $\Gamma = 130-150 \text{ MeV}/c^2$
- No quark-model states expected in this mass region
- Pronounced phase motion w.r.t. to other waves

Nature of $a_1(1420)$ still unclear

- Close to $K^*(892) \overline{K}$ threshold
- Isospin partner of $f_1(1420)$?
- Coupled-channel effect with $a_1(1260) \rightarrow K^*(892) \overline{K} \rightarrow f_0(980) \pi$?

• ...?

Broad intensity bump in spin-exotic $1^{-+} 1^+ \rho \pi P$ wave

Resonance interpretation work in progress

But wait... There's More!

Other diffractively produced channels

- Pion beam: $\pi^-\eta$, $\pi^-\eta'$, $\pi^-\eta\eta$, $\pi^-\pi^0\omega$, $K\bar{K}\pi$, $K\bar{K}\pi\pi$, $\pi^-\pi^+\pi^-\pi^+\pi^-$,...
- Kaon beam: $K^-\pi^+\pi^-$

Other production reactions

- Central production reactions
 - Study isoscalar $J^{PC} = 0^{++}$ mesons
- Diffractive production of baryon resonances
 - "Pomeron-induced"
 - E.g. $p p \rightarrow p \pi^+ \pi^- p_{\text{recoil}}$

COMPASS is a unique experiment to study light-quark hadron spectroscopy
But wait... There's More!

COMPASS is a unique experiment to study light-quark hadron spectroscopy

COMPA

But wait... There's More!

Other diffractively produced channels

- Pion beam: $\pi^-\eta$, $\pi^-\eta'$, $\pi^-\eta\eta$, $\pi^-\eta\eta$, $\pi^-\pi^0\omega$, $K\bar{K}\pi$, $K\bar{K}\pi\pi$, $\pi^-\pi^+\pi^-\pi^+\pi^-$,...
- Kaon beam: $K^-\pi^+\pi^-$

Other production reactions

- Central production reactions
 - Study isoscalar $J^{PC} = 0^{++}$ mesons
- Diffractive production of baryon resonances
 - "Pomeron-induced"
 - E.g. $p p \rightarrow p \pi^+ \pi^- p_{\text{recoil}}$

COMPASS is a unique experiment to study light-quark hadron spectroscopy

COMPA

But wait... There's More!

Other diffractively produced channels

- Pion beam: $\pi^-\eta$, $\pi^-\eta'$, $\pi^-\eta\eta$, $\pi^-\pi^0\omega$, $K\bar{K}\pi$, $K\bar{K}\pi\pi$, $\pi^-\pi^+\pi^-\pi^+\pi^-$,...
- Kaon beam: $K^-\pi^+\pi^-$

Other production reactions

- Central production reactions
 - Study isoscalar $J^{PC} = 0^{++}$ mesons
- Diffractive production of baryon resonances
 - "Pomeron-induced"
 - E.g. $p p \rightarrow p \pi^+ \pi^- p_{\text{recoil}}$

COMPASS is a unique experiment to study light-quark hadron spectroscopy

COMPAS

5 Backup slides

- Partial-wave analysis method
- Partial-wave decomposition of $(3\pi)^-$ final states
- Extraction of $[\pi\pi]_{S-wave}$ amplitude from $\pi^{-}\pi^{+}\pi^{-}$ system
- Mass-dependent fit

Simplest case: elastic scattering of non-relativistic spinless particles from static central potential J. J. Sakurai, "Modern QM" ch. 7.6

• Differential cross section from scattering amplitude *f* using transition operator *T* $\frac{d\sigma}{d\Omega} = |f(\vec{k}, \vec{k}')|^2 \text{ with } f(\vec{k}, \vec{k}') \propto \langle \vec{k}' | T | \vec{k} \rangle$

• Insert complete set $\{|LM\rangle\}$ of orthonormal basis states (spherical waves) Completeness: $\sum_{LM} |LM\rangle \langle LM| = \mathbb{1}$ $f(\vec{k}, \vec{k}') \propto \langle \vec{k}' | \mathbb{1}T\mathbb{1} | \vec{k} \rangle$ $\propto \sum_{L'M'} \sum_{LM} \underbrace{\langle \vec{k}' | L'M' \rangle}_{\propto Y_{L'}^{M'}(\vec{k}')} \underbrace{\langle L'M' | T | LM \rangle}_{\propto T_L(E)} \underbrace{\langle LM | \vec{k} \rangle}_{\propto Y_L^M(\vec{k})}$ $\propto \sum_{L} (2L+1) T_L(E) P_L(\cos \theta)$

 Simplest case:
 elastic scattering of non-relativistic spinless particles

 from static central potential
 J. J. Sakurai, "Modern QM" ch. 7.6

• Differential cross section from scattering amplitude *f* using transition operator *T* $\frac{d\sigma}{d\Omega} = |f(\vec{k}, \vec{k}')|^2 \text{ with } f(\vec{k}, \vec{k}') \propto \langle \vec{k}' | T | \vec{k} \rangle$

• Insert complete set $\{|LM\rangle\}$ of orthonormal basis states (spherical waves)

Completeness:
$$\sum_{LM} |LM\rangle \langle LM| = \mathbb{1}$$

$$\vec{k}, \vec{k}') \propto \langle \vec{k}' | \mathbbm{1} T \mathbbm{1} | \vec{k} \rangle$$

$$\propto \sum_{L'M'} \sum_{LM} \underbrace{\langle \vec{k}' | L'M' \rangle}_{\propto Y_{L'}^{M'}(\vec{k}')} \underbrace{\langle L'M' | T | LM \rangle}_{\propto T_L(E)} \underbrace{\langle LM | \vec{k} \rangle}_{\propto Y_L^M(\vec{k})}$$

$$\propto \sum_{L} (2L+1) T_L(E) P_L(\cos \theta)$$

Simplest case: elastic scattering of non-relativistic spinless particles from a static central potential (cont.) J. J. Sakurai, "Modern QM" ch. 7.6

$$f(\vec{k},\vec{k}') \propto \sum_{L} (2L+1) T_L(E) P_L(\cos\theta)$$

- *Key feature:* for each *L*, terms factorize into
 - Dynamic amplitude $T_L(E)$
 - Angular distribution $P_L(\cos \theta)$
- Transition amplitudes *T_L* contain interesting dynamics
- At fixed *E*: determination of *T_L* from data by decomposition of angular distributions in terms of *P_L*
- $T_L(E)$ usually parameterized by phase $\delta_L(E)$ and inelasticity $\eta_L(E)$:

$$T_L(E) \equiv \frac{\eta_L(E)e^{2\iota\delta_L(E)} - 1}{2\iota}$$

Boris Grube, TU München

COMPA

Simplest case: elastic scattering of non-relativistic spinless particles from a static central potential (cont.) J. J. Sakurai, "Modern QM" ch. 7.6

Hadron Spectroscopy a

Boris Grube, TU München

Simplest case: elastic scattering of non-relativistic spinless particles from a static central potential (cont.) J. J. Sakurai, "Modern QM" ch. 7.6

$$f(\vec{k},\vec{k}') \propto \sum_{L} (2L+1) T_L(E) P_L(\cos\theta)$$

- *Key feature:* for each *L*, terms factorize into
 - Dynamic amplitude $T_L(E)$
 - Angular distribution $P_L(\cos \theta)$
- Transition amplitudes *T_L* contain interesting dynamics
- At fixed *E*: determination of *T_L* from data by decomposition of angular distributions in terms of *P_L*
- $T_L(E)$ usually parameterized by phase $\delta_L(E)$ and inelasticity $\eta_L(E)$:

$$T_L(E) \equiv \frac{\eta_L(E)e^{2\iota\delta_L(E)} - 1}{2\iota}$$

Boris Grube, TU München

COMPA

Simplest case: elastic scattering of non-relativistic spinless particles from a static central potential (cont.) J. J. Sakurai, "Modern QM" ch. 7.6

$$f(\vec{k},\vec{k}') \propto \sum_{L} (2L+1) T_L(E) P_L(\cos\theta)$$

- *Key feature:* for each *L*, terms factorize into
 - Dynamic amplitude $T_L(E)$
 - Angular distribution $P_L(\cos \theta)$
- Transition amplitudes *T_L* contain interesting dynamics
- At fixed *E*: determination of *T_L* from data by decomposition of angular distributions in terms of *P_L*
- *T*_L(*E*) usually parameterized by phase δ_L(*E*) and inelasticity η_L(*E*):

$$T_L(E) \equiv \frac{\eta_L(E)e^{2\iota\delta_L(E)}-1}{2\iota}$$

Hadron Spectroscopy a

Parity Conservation at Production Vertex

Reflectivity basis

S. U. Chung and T. L. Trueman, Phys. Rev. D11 (1975) 633

- Reaction: beam + target \rightarrow *X* + recoil
- Reflectivity operator Π_y : reflection through production plane
- Particles in production plane: Π_y acts like parity but leaves momenta unchanged
- Eigenstates to Π_y : $|J^P M^{\epsilon}\rangle \equiv c(M) \left[|J^P M\rangle - \epsilon P(-)^{J-M}|J^P - M\rangle\right]$ where $M \ge 0$ and $c = \begin{cases} \frac{1}{2} & \text{for } M = 0, \\ \frac{1}{\sqrt{2}} & \text{for } M > 1 \end{cases}$
- Reflectivity $\epsilon = \pm 1$ (for bosons)
- **Parity conservation:** amplitudes with different *\varepsilon* do *not* interfere
- *ε* corresponds to naturality of exchanged Reggeon
 - Pomeron has positive naturality $\implies \epsilon = +1$ amplitudes dominant

Parity Conservation at Production Vertex

Reflectivity basis

S. U. Chung and T. L. Trueman, Phys. Rev. D11 (1975) 633

- Reaction: beam + target \rightarrow *X* + recoil
- Reflectivity operator Π_y : reflection through production plane
- Particles in production plane: Π_y acts like parity but leaves momenta unchanged
- Eigenstates to Π_y : $|J^P M^{\epsilon}\rangle \equiv c(M) \left[|J^P M\rangle - \epsilon P(-)^{J-M} |J^P - M\rangle \right]$ where $M \ge 0$ and $c = \begin{cases} \frac{1}{2} & \text{for } M = 0, \\ \frac{1}{\sqrt{2}} & \text{for } M > 1 \end{cases}$
- Reflectivity $\epsilon = \pm 1$ (for bosons)
- **Parity conservation:** amplitudes with different *\varepsilon* do *not* interfere
- *ε* corresponds to naturality of exchanged Reggeon
 - Pomeron has positive naturality $\implies \epsilon = +1$ amplitudes dominant

Parity Conservation at Production Vertex

Reflectivity basis

S. U. Chung and T. L. Trueman, Phys. Rev. D11 (1975) 633

- Reaction: beam + target \rightarrow *X* + recoil
- Reflectivity operator Π_y : reflection through production plane
- Particles in production plane: Π_y acts like parity but leaves momenta unchanged
- Eigenstates to Π_{y} : $|J^{P}M^{\epsilon}\rangle \equiv c(M) \left[|J^{P}M\rangle - \epsilon P(-)^{J-M}|J^{P}-M\rangle\right]$ where $M \ge 0$ and $c = \begin{cases} \frac{1}{2} & \text{for } M = 0, \\ \frac{1}{\sqrt{2}} & \text{for } M > 1 \end{cases}$
- Reflectivity $\epsilon = \pm 1$ (for bosons)
- **Parity conservation:** amplitudes with different ϵ do *not* interfere
- ϵ corresponds to naturality of exchanged Reggeon
 - Pomeron has positive naturality $\implies \epsilon = +1$ amplitudes dominant

Decay Amplitude in the Helicity Formalism

Two-body decay $a \rightarrow b + c$

- Kinematics defined by
 - Invariant mass m_a of a
 - Polar angles (θ, φ) of daughter b in rest frame of a
- Spin states of *b* and *c* are described in helicity basis
- J_b and J_c couple to total spin S
- Relative orbital angular momentum *L* between *b* and *c*

• L and S couple to J_a

Decay Amplitude in the Helicity Formalism

Two-body decay $a \rightarrow b + c$

- Kinematics defined by
 - Invariant mass m_a of a
 - Polar angles (θ, φ) of daughter b in rest frame of a
- Spin states of *b* and *c* are described in helicity basis
- J_b and J_c couple to total spin S
- Relative orbital angular momentum *L* between *b* and *c*
- L and S couple to J_a

Decay Amplitude in the Helicity Formalism

Two-body decay amplitude for $a \rightarrow b + c$

$$A_{a}(m_{a},\theta,\phi) = \sqrt{2L+1} \sum_{\lambda_{b},\lambda_{c}} (J_{b}\lambda_{b} J_{c} - \lambda_{c}|S\delta) (L 0 S\delta|J_{a}\delta)$$
$$D_{\mathcal{M},\delta}^{J_{a}*}(\theta,\phi,0) F_{L}(q) \Delta(m_{a}) A_{b} A_{b}$$

Decay amplitude has no free parameters!

Decay Amplitude in the Helicity Formalism

Two-body decay amplitude for $a \rightarrow b + c$

$$A_{a}(m_{a},\theta,\phi) = \sqrt{2L+1} \sum_{\lambda_{b},\lambda_{c}} (J_{b} \lambda_{b} J_{c} - \lambda_{c} | S \delta) (L 0 S \delta | J_{a} \delta)$$
$$D_{M_{a}\delta}^{J_{a}*}(\theta,\phi,0) F_{L}(q) \Delta(m_{a}) A_{b} A_{c}$$

Decay amplitude for multi-body final state

- Recursive calculation of two-body decay amplitudes for each vertex in isobar decay tree
- E.g. 2 vertices in $\pi^-\pi^+\pi^-$ case
 - X⁻ decay: Gottfried-Jackson frame

• $\Delta(m_X) \equiv 1$

• Isobar decay: helicity frame

• $A_{\pi^{\pm}} \equiv 1$

Decay Amplitude in the Helicity Formalism

Two-body decay amplitude for $a \rightarrow b + c$

$$A_{a}(m_{a},\theta,\phi) = \sqrt{2L+1} \sum_{\lambda_{b},\lambda_{c}} (J_{b} \lambda_{b} J_{c} - \lambda_{c} | S \delta) (L 0 S \delta | J_{a} \delta)$$
$$D_{M_{a}\delta}^{J_{a}*}(\theta,\phi,0) F_{L}(q) \Delta(m_{a}) A_{b} A$$

Decay amplitude for multi-body final state

- Recursive calculation of two-body decay amplitudes for each vertex in isobar decay tree
- E.g. 2 vertices in $\pi^-\pi^+\pi^-$ case
 - *X*⁻ decay: Gottfried-Jackson frame
 - $\Delta(m_X) \equiv 1$
 - Isobar decay: helicity frame
 - $A_{\pi^{\pm}} \equiv 1$

Decay Amplitude in the Helicity Formalism

Two-body decay amplitude for $a \rightarrow b + c$

$$A_{a}(m_{a},\theta,\phi) = \sqrt{2L+1} \sum_{\lambda_{b},\lambda_{c}} (J_{b} \lambda_{b} J_{c} - \lambda_{c} | S \delta) (L 0 S \delta | J_{a} \delta)$$
$$D_{M_{a}\delta}^{J_{a}*}(\theta,\phi,0) F_{L}(q) \Delta(m_{a}) A_{b} A$$

Decay amplitude for multi-body final state

- Recursive calculation of two-body decay amplitudes for each vertex in isobar decay tree
- E.g. 2 vertices in $\pi^-\pi^+\pi^-$ case
 - *X*⁻ decay: Gottfried-Jackson frame
 - $\Delta(m_X) \equiv 1$
 - Isobar decay: helicity frame
 - $A_{\pi^{\pm}} \equiv 1$

Decay Amplitude in the Helicity Formalism

Two-body decay amplitude for $a \rightarrow b + c$

$$A_{a}(m_{a},\theta,\phi) = \sqrt{2L+1} \sum_{\lambda_{b},\lambda_{c}} (J_{b} \lambda_{b} J_{c} - \lambda_{c} | S \delta) (L 0 S \delta | J_{a} \delta)$$
$$D_{M_{a}\delta}^{J_{a}*}(\theta,\phi,0) F_{L}(q) \Delta(m_{a}) A_{b} A$$

Decay amplitude for multi-body final state

- Recursive calculation of two-body decay amplitudes for each vertex in isobar decay tree
- E.g. 2 vertices in $\pi^-\pi^+\pi^-$ case
 - *X*⁻ decay: Gottfried-Jackson frame
 - $\Delta(m_X) \equiv 1$
 - Isobar decay: helicity frame
 - $A_{\pi^{\pm}} \equiv 1$

Cross section parameterization in mass-independent PWA

$$\mathcal{I}(\tau; m_X) = \sum_{\epsilon = \pm 1} \sum_{r=1}^{\text{rank}} \left| \sum_{i=1}^{\text{waves}} T_i^{r \epsilon}(m_X) A_i^{\epsilon}(\tau) \right|^2$$

• ϵ , *i*: quantum numbers of partial wave ($J^{PC}M^{\epsilon}[isobar]L$)

- $T_i^{r\epsilon}$: complex production amplitudes; fit parameters
- A_i^{ϵ} : complex decay amplitudes
- τ : phase space coordinates

Spin-density matrix

$$\rho_{ij}^{\epsilon} = \sum_{r=1}^{\operatorname{rank}} T_i^{r \,\epsilon} \, T_j^{r \,\epsilon*} \qquad \mathcal{I}(\tau; m_X) = \sum_{\epsilon = \pm 1} \sum_{i,j}^{\operatorname{waves}} \rho_{ij}^{\epsilon}(m_X) \, A_i^{\epsilon}(\tau) \, A_j^{\epsilon*}(\tau)$$

- Diagonal elements ρ_{ii} : intensities
- Off-diagonal elements ρ_{ii} , $i \neq j$: interference terms

Unbinned extended maximum likelihood fit in mass bins

Likelihood *L* to observe *N* events distributed according to model cross section *σ*(*τ*; *m*_X) and detector acceptance Acc(*τ*; *m*_X)

$$\mathcal{L} = \underbrace{\left[\frac{\overline{N}^{N}}{N!} e^{-\overline{N}}\right]}_{k=1} \prod_{k=1}^{N} \left[\frac{1}{\sqrt{n!}}\right]_{k=1}^{N} \left[\frac{1}{\sqrt{n$$

$$\sigma(\tau_k; m_X) \operatorname{Acc}(\tau_k; m_X)$$

$$\int \mathrm{d}\Phi_n(\tau;m_X)\,\sigma(\tau;m_X)\,\mathrm{Acc}(\tau;m_X)$$

Poisson likelihood to observe *N* events

likelihood to observe event k

Expected nmb. of events N ∝ ∫dΦ_n(τ; m_X) σ(τ; m_X) Acc(τ; m_X) *n*-body phase-space element dΦ_n(τ; m_X)

Unbinned extended maximum likelihood fit in mass bins

Likelihood *L* to observe *N* events distributed according to model cross section *σ*(*τ*; *m*_X) and detector acceptance Acc(*τ*; *m*_X)

$$\mathcal{L} = \underbrace{\left[\frac{\overline{N}^{N}}{N!}e^{-\overline{N}}\right]}_{k=1} \prod_{k=1}^{N} \underbrace{\left[\frac{\sigma(\tau_{k};m_{X})\operatorname{Acc}(\tau_{k};m_{X})}{\int \mathrm{d}\Phi_{n}(\tau;m_{X})\sigma(\tau;m_{X})\operatorname{Acc}(\tau_{k};m_{X})}\right]}_{\sigma(\tau;m_{X})} \underbrace{\left[\frac{\sigma(\tau_{k};m_{X})\operatorname{Acc}(\tau_{k};m_{X})}{\int \mathrm{d}\Phi_{n}(\tau;m_{X})\operatorname{Acc}(\tau_{k};m_{X})}\right]}_{\sigma(\tau;m_{X})} \underbrace{\left[\frac{\sigma(\tau_{k};m_{X})\operatorname{Acc}(\tau_{k};m_{X})}{\int \mathrm{d}\Phi_{n}(\tau;m_{X})\operatorname{Acc}(\tau_{k};m_{X})}\right]}_{\sigma(\tau;m_{X})}$$

Poisson likelihood to observe *N* events likelihood to observe event k

- Expected nmb. of events $\overline{N} \propto \int d\Phi_n(\tau; m_X) \sigma(\tau; m_X) \operatorname{Acc}(\tau; m_X)$
- *n*-body phase-space element $d\Phi_n(\tau; m_X)$

Unbinned extended maximum likelihood fit in mass bins

Insert intensity parameterization

$$\mathcal{I} = \sum_{\epsilon=\pm 1} \sum_{r=1}^{\text{rank}} \left| \sum_{i}^{\text{waves}} T_i^{r \epsilon} A_i^{\epsilon} \right|^2$$

Skip constant factors and take logarithm:

$$n \mathcal{L} = \sum_{k=1}^{N} \ln \left[\sum_{\epsilon = \pm 1} \sum_{r=1}^{\text{rank}} \left| \sum_{i}^{\text{waves}} T_{i}^{r \epsilon} A_{i}^{\epsilon}(\tau_{k}) \right|^{2} \right] - \sum_{\epsilon = \pm 1} \sum_{r=1}^{\text{rank}} \sum_{i,j}^{\text{waves}} T_{i}^{r \epsilon} T_{j}^{r \epsilon *} \underbrace{\int d\Phi_{n}(\tau) \operatorname{Acc}(\tau) A_{i}^{\epsilon}(\tau) A_{j}^{\epsilon *}(\tau)}_{\text{normalization integral } L_{i}}$$

- Maximization of $\ln \mathcal{L}$ with $T_i^r \epsilon(m_X)$ as free parameters
- $I_{ii}(m_X)$ estimated using phase-space Monte Carlo

Unbinned extended maximum likelihood fit in mass bins

• Insert intensity parameterization

$$\mathcal{I} = \sum_{\epsilon=\pm 1} \sum_{r=1}^{\text{rank}} \left| \sum_{i}^{\text{waves}} T_i^{r \epsilon} A_i^{\epsilon} \right|^2$$

• Skip constant factors and take logarithm:

$$\ln \mathcal{L} = \sum_{k=1}^{N} \ln \left[\sum_{\epsilon = \pm 1}^{\operatorname{rank}} \sum_{r=1}^{\operatorname{rank}} \left| \sum_{i}^{\operatorname{waves}} T_{i}^{r \epsilon} A_{i}^{\epsilon}(\tau_{k}) \right|^{2} \right] - \sum_{\epsilon = \pm 1}^{\sum} \sum_{r=1}^{\operatorname{rank}} \sum_{i,j}^{\operatorname{waves}} T_{i}^{r \epsilon} T_{j}^{r \epsilon *} \underbrace{\int \mathrm{d}\Phi_{n}(\tau) \operatorname{Acc}(\tau) A_{i}^{\epsilon}(\tau) A_{j}^{\epsilon *}(\tau)}_{\operatorname{normalization integral} L_{i}}$$

- Maximization of $\ln \mathcal{L}$ with $T_i^{r\epsilon}(m_X)$ as free parameters
- Decay amplitudes $A_i^{\epsilon}(\tau_k; m_X)$ are pre-calculated
- $I_{ij}(m_X)$ estimated using phase-space Monte Carlo

Test of fit quality

$$\mathcal{I}(\tau; m_X) = \left| \sum_{\text{waves}} T_{\text{wave}}(m_X) A_{\text{wave}}(\tau; m_X) \right|^2$$
• Compare to real data

Test of fit quality

$$\mathcal{I}(\tau; m_X) = \left| \sum_{\text{waves}} T_{\text{wave}}(m_X) A_{\text{wave}}(\tau; m_X) \right|^2$$
• Compare to real data

Test of fit quality

$$\mathcal{I}(\tau; m_X) = \left| \sum_{\text{waves}} T_{\text{wave}}(m_X) A_{\text{wave}}(\tau; m_X) \right|^2$$
• Compare to real data

Test of fit quality

$$\mathcal{I}(\tau; m_X) = \left| \sum_{\text{waves}} T_{\text{wave}}(m_X) A_{\text{wave}}(\tau; m_X) \right|^2$$
• Compare to real data

PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$: 6⁻⁺ Wave Intensity of 6⁻⁺0⁺ $\rho\pi H$ Wave compared to Deck-Model (green)

Deck intensity normalized to $6^{-+}1^+\rho\pi H t'$ -integrated intensity

Boris Grube, TU München

COMPAS

PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$: 1⁻⁺ Spin-Exotic Wave Intensity of 1⁻⁺1⁺ $\rho\pi p$ Wave compared to Deck-Model (green)

Hadron Spectroscopy at

COMPAS

Boris Grube, TU München

PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$: 1⁻⁺ Spin-Exotic Wave Relative Phases of 1⁻⁺1⁺ $\rho\pi P$ Wave

COMPA

PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$: 1⁻⁺ Spin-Exotic Wave Relative Phases of 1⁻⁺1⁺ $\rho\pi P$ Wave

COMPA

Is the $a_1(1420)$ a Model Artifact?

PWA model

$$\mathcal{I}(\tau; m_X) = \left| \sum_{\text{waves}} T_{\text{wave}}(m_X) A_{\text{wave}}(\tau; m_X) \right|^2$$

• Decay amplitudes $A_{wave}(\tau)$

- Need precise knowledge of isobar $\rightarrow \pi^+\pi^-$ amplitude
- Parametrization of J^{PC} = 0⁺⁻ isobars difficult
 - $[\pi\pi]_{S-\text{wave}}$
 - $f_0(980)$
 - $f_0(1500$
- Information from ππ elastic scattering is used

COMPAS

Is the $a_1(1420)$ a Model Artifact?

PWA model

$$\mathcal{I}(\tau; m_X) = \left| \sum_{\text{waves}} T_{\text{wave}}(m_X) A_{\text{wave}}(\tau; m_X) \right|$$

• Decay amplitudes $A_{wave}(\tau)$

- Need precise knowledge of isobar $\rightarrow \pi^+\pi^-$ amplitude
- Parametrization of $J^{PC} = 0^{++}$ isobars difficult
 - $[\pi\pi]_{S-\text{wave}}$
 - *f*₀(980)
 - $f_0(1500)$
- Information from ππ elastic scattering is used

Is the $a_1(1420)$ a Model Artifact?

Novel analysis method

(inspired by E791, PRD 73 (2006) 032204)

- Replace J^{PC} = 0⁺⁺ isobar parametrizations by piece-wise constant amplitudes in m_{π⁺π⁻} bins
- Extract $m_{3\pi}$ dependence of $J^{PC} = 0^{++}$ isobar amplitude from data
 - Drastic reduction of model bias
 - Caveat: significant increase in number of fit parameters

Is the $a_1(1420)$ a Model Artifact?

Novel analysis method

(inspired by E791, PRD 73 (2006) 032204)

- Replace J^{PC} = 0⁺⁺ isobar parametrizations by piece-wise constant amplitudes in m_{π⁺π⁻} bins
- Extract $m_{3\pi}$ dependence of $J^{PC} = 0^{++}$ isobar amplitude from data
 - Drastic reduction of model bias
 - Caveat: significant increase in number of fit parameters

Strong correlation of π(1800) with f₀(980) Some signal for π(1800) → f₀(1500)π

• Strong correlation of $\pi(1800)$ with $f_0(980)$

• Some signal for $\pi(1800) \rightarrow f_0(1500)\pi$

COMP

- Strong correlation of $\pi(1800)$ with $f_0(980)$
- Some signal for $\pi(1800) \rightarrow f_0(1500)\pi$

- Strong correlation of $\pi(1800)$ with $f_0(980)$
- Some signal for $\pi(1800) \rightarrow f_0(1500)\pi$

Correlation of 3π intensity around 1.4 GeV/c² with f₀(980)
Confirms that a₁(1420) signal is *not* an artifact of isobar parametrization

- Correlation of 3π intensity around 1.4 GeV/ c^2 with $f_0(980)$
- Confirms that $a_1(1420)$ signal is *not* an artifact of isobar parametrization

COMP

• Correlation of 3π intensity around 1.4 GeV/ c^2 with $f_0(980)$

• Confirms that $a_1(1420)$ signal is *not* an artifact of isobar parametrization

COMP

New method: extraction of $[\pi\pi]_{S-wave}$ amplitude from data

- Strong dependence on mother wave and $m_{3\pi}$
- Confirms coupling of $a_1(1420)$ to $f_0(980)\pi$
- Future:
 - Apply method to $[\pi\pi]$ *P*-, *D*-, *F*-, ... waves
 - Bootstrapping: put extracted isobar amplitudes back into fit
 - Parametrization of $[\pi\pi]_{S-wave}$ amplitude as function of $m_{3\pi}$
 - Extraction of isobar resonance parameters

Parametrization of Mass-Dependence of Spin-Density Matrix

Ansatz:
$$\rho_{ij}^{\epsilon}(m_X, t') = \sum_{r=1}^{\operatorname{rank}} T_i^{r \epsilon}(m_X, t') T_j^{r \epsilon *}(m_X, t')$$

$$T_{i}^{r\epsilon}(m_{X},t') = \sum_{k_{i}}^{\text{resonances}} C_{irk}^{\epsilon}(t') \mathcal{A}_{k}(m_{X};\zeta_{k}) \sqrt{\underbrace{\int d\Phi_{n}(\tau) |A_{i}^{\epsilon}(\tau;m_{X})|^{2}}}$$

phase space for wave *i*

Dynamic amplitudes $\mathcal{A}_k(m_X; \zeta_k)$

Resonance line shapes

• Typically relativistic Breit-Wigner with mass-dependent width $\mathcal{A}_{k}^{BW}(m_{X}; m_{0}, \Gamma_{0}) = \frac{m_{0} \Gamma_{0}}{m_{0}^{2} - m_{X}^{2} - i m_{0} \Gamma_{tot}(m_{X})}$ $\Gamma_{tot}(m_{X}) = \sum_{\nu}^{decays} \Gamma_{\nu}(m_{X}) = \sum_{\nu}^{decays} \Gamma_{0,\nu} \frac{m_{0}}{m_{X}} \frac{q_{\nu}}{q_{0,\nu}} \frac{F_{L_{\nu}}(q_{\nu})}{F_{L_{\nu}}(q_{0,\nu})}$ • Non-resonant coherent background contributions

• Typically exponentially damped phase space: $\mathcal{A}_{k}^{\text{BG}}(m_{\mathbf{X}}; a_{k}) = e^{-a_{k}q_{k}^{2}}$

COMPA

Parametrization of Mass-Dependence of Spin-Density Matrix

Ansatz:
$$\rho_{ij}^{\epsilon}(m_X, t') = \sum_{r=1}^{\operatorname{rank}} T_i^{r \epsilon}(m_X, t') T_j^{r \epsilon *}(m_X, t')$$

$$T_{i}^{r\epsilon}(m_{X},t') = \sum_{k_{i}}^{\text{resonances}} C_{irk}^{\epsilon}(t') \mathcal{A}_{k}(m_{X};\zeta_{k}) \sqrt{\underbrace{\int} d\Phi_{n}(\tau) |A_{i}^{\epsilon}(\tau;m_{X})|^{2}}$$

phase space for wave *i*

Dynamic amplitudes $\mathcal{A}_k(m_X; \zeta_k)$

- Resonance line shapes
 - Typically relativistic Breit-Wigner with mass-dependent width

$$\mathcal{A}_{k}^{\text{BW}}(m_{X}; m_{0}, \Gamma_{0}) = \frac{m_{0} \Gamma_{0}}{m_{0}^{2} - m_{X}^{2} - i m_{0} \Gamma_{\text{tot}}(m_{X})}$$
$$\Gamma_{\text{tot}}(m_{X}) = \sum_{\nu}^{\text{decays}} \Gamma_{\nu}(m_{X}) = \sum_{\nu}^{\text{decays}} \Gamma_{0,\nu} \frac{m_{0}}{m_{X}} \frac{q_{\nu}}{q_{0,\nu}} \frac{F_{L_{\nu}}(q_{\nu})}{F_{L_{\nu}}(q_{0,\nu})}$$

- Non-resonant coherent background contributions
 - Typically exponentially damped phase space: $\mathcal{A}_{k}^{BC}(m_{X}; a_{k}) = e^{-a_{k}q_{k}^{2}}$

COMPA

Parametrization of Mass-Dependence of Spin-Density Matrix

Ansatz:
$$\rho_{ij}^{\epsilon}(m_X, t') = \sum_{r=1}^{\operatorname{rank}} T_i^{r\epsilon}(m_X, t') T_j^{r\epsilon*}(m_X, t')$$

$$T_{i}^{r\epsilon}(m_{X},t') = \sum_{k_{i}}^{\text{resonances}} C_{irk}^{\epsilon}(t') \mathcal{A}_{k}(m_{X};\zeta_{k}) \sqrt{\underbrace{\int} \mathrm{d}\Phi_{n}(\tau) |A_{i}^{\epsilon}(\tau;m_{X})|^{2}}$$

phase space for wave *i*

Dynamic amplitudes $\mathcal{A}_k(m_X; \zeta_k)$

- Resonance line shapes
 - Typically relativistic Breit-Wigner with mass-dependent width

$$\mathcal{A}_{k}^{\text{BW}}(m_{X}; m_{0}, \Gamma_{0}) = \frac{m_{0} \Gamma_{0}}{m_{0}^{2} - m_{X}^{2} - i m_{0} \Gamma_{\text{tot}}(m_{X})}$$
$$\Gamma_{\text{tot}}(m_{X}) = \sum_{\nu}^{\text{decays}} \Gamma_{\nu}(m_{X}) = \sum_{\nu}^{\text{decays}} \Gamma_{0,\nu} \frac{m_{0}}{m_{X}} \frac{q_{\nu}}{q_{0,\nu}} \frac{F_{L_{\nu}}(q_{\nu})}{F_{L_{\nu}}(q_{0,\nu})}$$

- Non-resonant coherent background contributions
 - Typically exponentially damped phase space: $\mathcal{A}_k^{\mathrm{BG}}(m_X; a_k) = e^{-a_k q_k^2}$

COMPA

Parametrization of Mass-Dependence of Spin-Density Matrix

Ansatz:
$$\rho_{ij}^{\epsilon}(m_X, t') = \sum_{r=1}^{\operatorname{rank}} T_i^{r\epsilon}(m_X, t') T_j^{r\epsilon*}(m_X, t')$$

$$T_{i}^{r\epsilon}(m_{X},t') = \sum_{k_{i}}^{\text{resonances}} C_{irk}^{\epsilon}(t') \mathcal{A}_{k}(m_{X};\zeta_{k}) \sqrt{\underbrace{\int} \mathrm{d}\Phi_{n}(\tau) \left|A_{i}^{\epsilon}(\tau;m_{X})\right|^{2}}$$

phase space for wave i

Model parameters determined by χ^2 fit to $\rho_{ii}^{\epsilon}(m_X)$

Free parameters:

- Complex amplitudes C_{irk}^{ϵ}
- Resonance or background parameters in $A_k(m_X)$