Constraints on phase transitions in neutron star matter

Special thanks to Gabriele Erkelenz, Ulf Meißner and the prize committee Supervisors: Wolfram Weise and Norbert Kaiser

Dr. Klaus Erkelenz Prize Colloquium

Len Brandes 14.11.2023

Phases of strongly interacting matter

- ► QCD vacuum:
 - · Confinement of quarks and gluons in hadrons
 - Spontaneously broken chiral symmetry
- ► Crossover at *T* ~ 155 MeV to quark-gluon plasma [Bazavov *et al.*, Phys. Rev. D 90 (2014)]
- Nuclear liquid-gas phase transition at $\mu = 923 \text{ MeV}$ [Elliott, Lake, Moretto and Phair, Phys. Rev. C 87 (2013)]
- Chirally restored phase at asymptotic densities [Schäfer and Wilczek, Phys. Rev. D 60 (1999)]

\rightarrow Unknown transition from nuclear to quark matter

Nucleon-nucleon potential

CURRENT STATUS OF THE RELATIVISTIC TWO-NUCLEON ONE BOSON EXCHANGE POTENTIAL

K. ERKELENZ

Institut für Theoretische Kernphysik, Bonn, W.-Germany

Received April 1974

[Erkelenz, Phys. Rept. 13 (1974)]

- Describe nucleon-nucleon interactions via boson exchanges
 - \rightarrow Further developed into Bonn potential

[Machleidt and Holinde, Phys. Rept. 149 (1987)]

► Good agreement with nucleon-nucleon data

[Machleidt, Phys. Rev. C 63 (2001)]

- ► **Repulsive core** at *r*_{hard-core} ~ 0.5 fm
 - → Relevance for dense baryonic matter in neutron stars average distance between baryons: $d \propto n^{-1/3}$

Neutron stars

- Stars remain stable by fusing light elements to heavier elements
- At some point no light elements left in core
 - \rightarrow Resulting implosion leads to supernova
- Collapsed core forms neutron star

Neutron stars

- Masses $M \sim 1 2M_{\odot}$, radii $R \sim 11 13$ km
 - → High baryon densities in core beyond terrestrial experiments
- Recent substantial extension of observational data base
- Phase transition in dense neutron star matter?

Description of neutron stars

► Internal structure described by Tolman-Oppenheimer-Volkoff (TOV) equations

$$\frac{\partial P(r)}{\partial r} = -\frac{G_N}{r^2} \left(\varepsilon(r) + P(r) \right) \left(m(r) + 4\pi r^3 P(r) \right) \left(1 - \frac{2G_N m(r)}{r} \right)^{-1} ,$$

$$\frac{\partial m(r)}{\partial r} = 4\pi r^2 \varepsilon(r)$$
 [Tolman, Phys. Rev. 55 (1939)] [Oppenheimer and Volkoff, Phys. Rev. 55 (1939)]

- ► Solved given equation of state (EoS) $P(\varepsilon)$ and central energy density $\varepsilon(r = 0) = \varepsilon_c$
 - \rightarrow Solution for different ε_c yields (*M*, *R*)-relation
- Each EoS has maximum density $\varepsilon_{c,max}$ corresponding to maximum supported mass M_{max}

Description of neutron stars

► Internal structure described by Tolmann-Oppenheimer-Volkoff (TOV) equations

$$\frac{\partial P(r)}{\partial r} = -\frac{G_N}{r^2} \left(\varepsilon(r) + P(r) \right) \left(m(r) + 4\pi r^3 P(r) \right) \left(1 - \frac{2G_N m(r)}{r} \right)^{-1} ,$$

$$\frac{\partial m(r)}{\partial r} = 4\pi r^2 \varepsilon(r) \qquad \text{[Tolman, Phys. Rev. 55 (11)]}$$

[Tolman, Phys. Rev. 55 (1939)] [Oppenheimer and Volkoff, Phys. Rev. 55 (1939)]

- ► Solved given equation of state (EoS) $P(\varepsilon)$ and central energy density $\varepsilon(r = 0) = \varepsilon_c$
- Simultaneously solve for tidal deformability Λ
 - \rightarrow Relevant for neutron stars in binary systems

Speed of sound

Determine EoS from speed of sound

$$c_s^2(\varepsilon) = \frac{\partial P(\varepsilon)}{\partial \varepsilon}$$

- Causality & thermodynamic stability: $0 \le c_s \le 1$
- Measure of coupling strength in matter
 - → Characteristic signature of phase structure:
 - Nucleonic: monotonously rising sound speed
 - First-order phase transition: coexistence interval with zero sound speed c_s² ~ 0
 - Crossover: peaked behaviour

[McLerran and Reddy, Phys. Rev. Lett. 122 (2019)]

Parametrization

Introduce general parametrization by segment-wise linear interpolations

$$c_{s}^{2}(\varepsilon,\theta) = \frac{(\varepsilon_{i+1} - \varepsilon)c_{s,i}^{2} + (\varepsilon - \varepsilon_{i})c_{s,i+1}^{2}}{\varepsilon_{i+1} - \varepsilon_{i}}$$
[Annala *et al.*, Nature Phys. 16, 907 (2020)]

- Can describe wide range of possible phase transitions and crossovers
- Previous analyses: similar results to non-parametric representations [Annala et al., arXiv:2303.11356 (2023)]
- Constrain parameters $\theta = (\varepsilon_i, c_{s,i}^2)$ based on available data
 - \rightarrow Analyse for signatures of **possible phase transitions**

Bayesian inference

► Constrain parameters of $c_s^2(\varepsilon, \theta)$ via **Bayesian inference** based on **data** \mathscr{D}

 $\Pr(\theta|\mathscr{D}) \propto \Pr(\mathscr{D}|\theta) \Pr(\theta)$

- Compute posterior probability $Pr(\theta|\mathscr{D})$ for parameters θ :
 - Compute likelihood $\Pr(\mathcal{D}|\theta)$ for each data \mathcal{D}
 - Choose prior ranges for parameters $Pr(\theta)$
- ► Compute median and credible bands at 68% or 95% level
 - → Here: more prior support at small sound speeds to analyse phase transitions [LB, Weise and Kaiser, Phys. Rev. D 107 (2023)]

[LB, Weise and Kaiser, Phys. Rev. D 108 (2023)]

Bayesian inference

► Constrain parameters of $c_s^2(\varepsilon, \theta)$ via **Bayesian inference** based on data \mathscr{D}

 $\Pr(\theta|\mathscr{D}) \propto \Pr(\mathscr{D}|\theta) \Pr(\theta)$

- Compute posterior probability $Pr(\theta|\mathscr{D})$ for parameters θ :
 - Compute likelihood $\Pr(\mathcal{D}|\theta)$ for each data \mathcal{D}
 - Choose prior ranges for parameters $Pr(\theta)$
- ► Quantify evidence for hypothesis H₀ vs. H₁ with **Bayes factors**

$$\mathscr{B}_{H_0}^{H_1} = \frac{\Pr(\mathscr{D}|H_1)}{\Pr(\mathscr{D}|H_0)}$$

 \rightarrow Comparison to classification scheme for statistical conclusions

[Lee and Wagenmakers, *Bayesian Cognitive Modeling* (Cambridge University Press, 2014)] [Jeffreys, *Theory of Probability* (Oxford University Press, 1961)]

[LB, Weise and Kaiser, Phys. Rev. D 108 (2023)]

Perturbative QCD

- Strong coupling decreases at high densities
 - → Perturbative QCD calculations in terms of quark and gluon degrees of freedom
- Asymptotic boundary condition at $n \ge 40 n_0$ (with $n_0 = 0.16 \text{ fm}^{-3}$)
- Speed of sound reaches **conformal limit** $c_s^2 = 1/3$ from below
 - → Interpolation to asymptotic pQCD with $0 \le c_s \le 1$ constrains EoS at smaller densities

[Komoltsev and Kurkela, Phys. Rev. Lett. 128 (2022)]

Exclude EoS where matching to asymptotic pQCD is not possible

Chiral effective field theory

 ChEFT: systematic expansion of nuclear forces at low momenta with controlled uncertainties

 \rightarrow Employ only up to $n \le 1.3 n_0$

[Essick et al., Phys. Rev. C 102 (2020)]

Shapiro time delay

- ► Neutron stars with strong magnetic fields emit synchroton radiation
- ► If magnetic and rotation axis not aligned, double cone of radiation rotates (→ pulsars)
- Binary systems: gravitational field of companion changes pulsar signal
- ► Extract **neutron star masses** with high precision (68% level):

PSR J0348+0432	M = 2.01 \pm 0.04 M_{\odot}	[Antoniadis et al., Science 340 (2013)
PSR J0740+6620	$M = 2.08 \pm 0.07 M_{\odot}$	[Fonseca et al., Astrophys. J. Lett. 915 (2021)

 \rightarrow Matter must be sufficiently stiff to support such high masses

[Demorest et al., Nature 467 (2010)]

Pulse profile modelling

PSR J0030+0451

PSR J0740+6620

► Hot spots form on magnetic polar caps of rapidly rotating neutron stars

 $R = 12.71^{+1.14}_{-1.19}$ km

 $R = 12.39^{+1.30}_{-0.98}$ km

 $M = 1.34^{+0.15}_{-0.16} M_{\odot}$

 $M = 2.072^{+0.067}_{-0.066} M_{\odot}$

- ► Thermal X-ray emission modulated by gravitational effects
 - \rightarrow Measured by **NICER** telescope on ISS
- Model hot spots and neutron star atmosphere
 - → Infer **mass and radius** from X-ray measurements (68% level):

[Riley et al., Astrophys. J. Lett. 887 (2019)]

[Riley et al., Astrophys. J. Lett. 918 (2021)]

 \rightarrow Very similar radii for 1.34 and 2.07 M_{\odot} neutron stars

Neutron star mergers

- Binary neutron star mergers produce gravitational waves
- Compare observed LIGO and Virgo signal to waveform models
- Waveform depends on M₂/M₁ and combination of tidal deformabilities

$$\bar{\Lambda} = \frac{16}{13} \frac{(M_1 + 12M_2)M_1^4\Lambda_1 + (M_2 + 12M_1)M_2^4\Lambda_2}{(M_1 + M_2)^5}$$

[Dietrich, Hinderer and Samajdar, Gen. Rel. Grav. 53 (2021)]

• Two binary neutron star mergers detected so far (90% level):

 $\begin{array}{ll} \mbox{GW170817} & \Bar{\Lambda} = 320^{+420}_{-230} \\ \mbox{GW190425} & \Bar{\Lambda} \leq 600 \end{array}$

[Abbott et al. (LIGO and Virgo Collaborations), Phys. Rev. X 9 (2019)]

[Abbott et al. (LIGO and Virgo Collaborations), Astrophys. J. Lett. 892 (2020)]

New data: black widow pulsar

- Black widow pulsars accrete most of mass from companion
 - \rightarrow Determine mass via observation of companion
- PSR J0952-0607 heaviest neutron star observed so far

 $M = 2.35 \pm 0.17 M_{\odot}$ [Romani *et al.*, ApJL 934 (2022)]

- Simpler heating model compared to other black widows
- Second fastest known pulsar T = 1.41 ms
 - \rightarrow Rotation correction via empirical formula

[Konstantinou and Morsink, Astrophys. J. 934, 139 (2022)]

[W.M. Keck Observatory, Roger W. Romani, Alex Filippenko]

- Steep increase of speed of sound around $\varepsilon \sim 250 600 \,\mathrm{MeV \, fm^{-3}}$
 - \rightarrow Required to support black-widow (BW) heavy mass measurement
- Conformal bound $c_s^2 \le 1/3$ exceeded inside neutron stars
 - \rightarrow Strongly repulsive correlations at high densities
- ► Slight **tension** between ChEFT at $n \simeq 2 n_0$ and astro data

Previous + BW

[LB, Weise and Kaiser, Phys. Rev. D 108 (2023)]

[Altiparmak, Ecker and Rezzolla, Astrophys. J. Lett. 939 (2022)] [Legred, Chatziioannou, Essick, Han and Landry, Phys. Rev. D 104 (2021)]

Previous + BW

[Essick et al., Phys. Rev. C 102 (2020)]

Mass-radius & tidal deformability

- Good agreement with data **not included** in Bayesian analysis:
 - Thermonuclear burster 4U 1702-429

[Nättilä et al., Astron. & Astrophys. 608 (2017)]

• $R(M = 1.4 M_{\odot})$ from quiescent low mass X-ray binaries (qLMXBs)

[Steiner et al., Mon. Not. Roy. Astron. Soc. 476 (2018)]

- Median with almost constant radius R ~ 12.3 km
- ► Good agreement with other GW170817 analyses:
 - Masses and tidal deformabilities of two neutron stars

[Fasano, Abdelsalhin, Maselli, and Ferrari, Phys. Rev. Lett. 123 (2019)]

• $\Lambda(M = 1.4 M_{\odot})$ from universal relations

[Abbott et al. (LIGO and Virgo Collaborations), Phys. Rev. Lett. 121 (2018)]

Pressure & coexistence interval

- Significantly increased pressure compared to previous EoS
- Maxwell construction of first-order phase transition: constant pressure in phase coexistence region
 - \rightarrow Width Δn measure of phase transition 'strength'
- Maximum possible interval within posterior credible band

 $\left(\frac{\Delta n}{n}\right)_{\max} \le 0.2$ at 68% level

[LB, Weise and Kaiser, Phys. Rev. D 108 (2023)]

► Compare to 'strong' nuclear liquid-gas phase transition

 $\frac{\Delta n}{n} > 1$ [Fiorilla, Kaiser and Weise, Nucl. Phys. A 880 (2012)]

\rightarrow Only weak first-order phase transitions <code>possible</code>

Small sound speeds

- Quantify evidence of small sound speeds inside neutron star cores with Bayes factor
 - $\mathscr{B}^{c_{s,\min}^2>0.1}_{c_{s,\min}^2\leq 0.1}$

 $\rightarrow c_{s,\min}^2 \! \leq \! 0.1$ perquisite for first-order phase transition

- Previous analyses: c²_s > 0.1 in neutron stars with M ≤ 2M_☉ [Ecker and Rezzolla, Astrophys. J. Lett. 939 (2022)] [Annala *et al.*, arXiv:2303.11356 (2023)]
- Heavy mass measurement increases Bayes factor
- Strong evidence against c²_{s,min} ≤ 0.1 in cores of neutron stars with M ≤ 2.1 M_☉ [LB, Weise and Kaiser, Phys. Rev. D 108 (2023)]

\rightarrow Strong first-order phase transitions unlikely based on empirical data

Possible interpretation

- ▶ **Central densities** in neutron stars (68%): $n_c < 5 n_0$ for $M \le 2.3 M_{\odot}$
 - \rightarrow Average distance between baryons: $d > 1.0 \,\text{fm} \gg r_{\text{hard-core}} \sim 0.5 \,\text{fm}$
- Chiral nucleon-meson model: nucleons interacting via exchange of effective mesons [Floerchinger and Wetterich, Nucl. Phys. A 890–891 (2012)] [Drews and Weise, Prog. Part. Nucl. Phys. 93 (2017)]
- ► Mean-field (MF) approximation: first-order order phase transition to chirally restored phase
- ► Extended mean-field (EMF): fermionic vacuum fluctuations stabilize order parameter

Summary

- ► Unknown transition from nucleons to quarks and gluons at high densities
- Bayesian inference of sound speed in neutron star matter based on:
 - Shapiro time-delays
 - NICER X-ray measurements
 - Gravitational waves from binary neutron star mergers

- ChEFT results at small densities
- Perturbative QCD calculations at asymptotically high densities
- (New) black widow pulsar $M = 2.35 \pm 0.17 M_{\odot}$
- Maximum possible phase coexistence interval $(\Delta n/n)_{\text{max}} \le 0.2$
- ▶ Strong evidence against $c_{s,\min}^2 \le 0.1$ in cores of neutron stars with $M \le 2.1 M_{\odot}$
- Central densities $n_c < 5 n_0$ for $M \le 2.3 M_{\odot}$: average distance between baryons still > 1 fm
 - → Strong first-order phase transitions unlikely based on empirical data
 - → Fluctuations stabilize hadronic phase?

Outlook

- Fourth observation run of LIGO, Virgo and KAGRA started on May 4th
- ► Four more objects to be measured by NICER telescope
- Moment-of-inertia measurement of PSR J0737-3039 in next few years
- Extract more information with novel statistical tools from Machine Learning

[Farrell et al., arXiv:2305.07442 (2023)]

[Landry and Kumar, Astrophys. J. 868 (2018)]

→ Many more future measurements will put even tighter constraints on phase structure at high densities

nature	
The golden age of neutron-star physics has arrived	
These stellar remnants are some of the Universe's most enigmatic objects – and they are finally starting to give up their secrets.	
Adam Mann	

Constraints on phase transitions in neutron star matter | Len Brandes

[Greif et al., MNRAS 485 (2019)]

Supplementary material

Twin stars

- Strong phase transitions can lead to mass-radius relations with multiple stable branches ('twin stars')
- Bayes factor gives extreme evidence against multiple stable branches [Gorda et al., arXiv:2212.10576 (2022)]
- ► Without likelihood from ChEFT 'only' strong evidence:

 $\mathscr{B}_{N_{\text{branches}} \geq 1}^{N_{\text{branches}} = 1} = 12.97$

[Essick, Legred, Chatziioannou, Han and Landry, arXiv:2305.07411 (2023)]

• Disconnection takes place at $M \sim 0.8 M_{\odot}$

 \rightarrow Unlikely based on nuclear phenomenology

Possible impact of HESS J1731-347

► Central compact object within supernova remnant HESS J1731-347:

 $M = 0.77^{+0.20}_{-0.17} M_{\odot}$ $R = 10.4^{+0.86}_{-0.78} \text{ km}$

[Doroshenko et al., Nat. Astron. 6 (2022)]

- Unusually light neutron star with very low radius
 - → Neutron star mass $M < 1.17 M_{\odot}$ in contradiction with known formation mechanisms [Suwa *et al.*, MNRAS 481 (2018)]

→ Strange star?

Systematic uncertainty: larger masses and radii might be possible

[Alford and Halpern, Astrophys. J. 944 (2023)]

Tension between HESS and current astrophysical data

[Jiang, Ecker and Rezzolla, arXiv:2211.00018 (2022)]

 $R \,[\mathrm{km}]$

General EoS parametrization

Determine EoS from speed of sound

$$c_s^2(\varepsilon) = \frac{\partial P(\varepsilon)}{\partial \varepsilon}$$

Parametrize by segment-wise linear interpolations

$$C_{s}^{2}(\varepsilon,\theta) = \frac{(\varepsilon_{i+1} - \varepsilon)C_{s,i}^{2} + (\varepsilon - \varepsilon_{i})C_{s,i+1}^{2}}{\varepsilon_{i+1} - \varepsilon_{i}}$$
[Annala *et al.*, Nature Phys. 16, 907 (2020)]

- Matching to BPS crust at low densities $(c_{s,0}^2, \varepsilon_0) = (c_{s,crust}^2, \varepsilon_{crust})$ [G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170 (1971)]
- ► Constant speed of sound $c_s^2(\varepsilon, \theta) = c_{s,N}^2$ beyond last point $\varepsilon > \varepsilon_N$
- Choose N = 5 corresponding to 7 segments and 10 free parameters
- Priors sampled logarithmically

$$c_{s,i}^2 \in [0,1]$$
 $\varepsilon_i \in [\varepsilon_{crust}, 4 \,\mathrm{GeV}\,\mathrm{fm}^{-3}]$

Parametrizations with only 4 segments leads to comparable results as non-parametric Gaussian process

[Annala et al., arXiv:2303.11356 (2023)]

Bayesian inference

► Bayes theorem:

 $\mathsf{Pr}(\theta|\mathscr{D},\mathscr{M}) = \frac{\mathsf{Pr}(\mathscr{D}|\theta,\mathscr{M})\,\mathsf{Pr}(\theta|\mathscr{M})}{\mathsf{Pr}(\mathscr{D}|\mathscr{M})}$

- Choose **Priors** for parameters $Pr(\theta|\mathcal{M})$
- ► Likelihood $Pr(\mathcal{D}|\theta, \mathcal{M})$: probability of data \mathcal{D} to occur for θ and model \mathcal{M}
- (M, R, Λ) can be deterministically determined for θ

 $\Pr(\mathcal{D}|\theta,\mathcal{M}) = \Pr(\mathcal{D}|M,R,\Lambda,\mathcal{M})$

 \rightarrow For computational feasibility assume (valid for flat Priors in $(M,R,\Lambda))$

 $\mathsf{Pr}(\mathcal{D}|M,R,\Lambda,\mathcal{M}) \propto \mathsf{Pr}(M,R,\Lambda|\mathcal{D},\mathcal{M})$

[Riley, Raaijmakers and Watts, Mon. Not. Roy. Astron. Soc. 478 (2018)] [Raaijmakers et al., ApJL 918 (2021)]

Bayesian inference

Bayes theorem:

 $\mathsf{Pr}(\theta|\mathscr{D},\mathscr{M}) = \frac{\mathsf{Pr}(\mathscr{D}|\theta,\mathscr{M})\,\mathsf{Pr}(\theta|\mathscr{M})}{\mathsf{Pr}(\mathscr{D}|\mathscr{M})}$

• Evidence $Pr(\mathcal{D}|\mathcal{M})$: determined via normalization of the posterior

$$\Pr(\mathcal{D}|\mathcal{M}) = \int d\theta \ \Pr(\mathcal{D}|\theta, \mathcal{M}) \Pr(\theta|\mathcal{M})$$

- \rightarrow High-dimensional integral, use sampling techniques
- Credible bands: determine $P(\varepsilon_i, \theta)$ on grid $\{\varepsilon_i\}$ for posterior samples to get $\Pr(P|\varepsilon_i, \mathcal{D}, \mathcal{M})$

 \rightarrow Compute credible interval [*a*,*b*] with probability α at ε_i

$$\alpha = \int_{a}^{b} dP \operatorname{Pr}(P|\varepsilon_{i}, \mathcal{D}, \mathcal{M})$$

 \rightarrow Combine credible intervals at all ε_i to posterior credible band $P(\varepsilon)$

Trace anomaly measure

Trace anomaly measure as signature of conformality

$$\Delta = \frac{g_{\mu\nu}T^{\mu\nu}}{3\varepsilon} = \frac{1}{3} - \frac{P}{\varepsilon}$$

[Fujimoto, Fukushima, McLerran and Praszałowicz, Phys. Rev. Lett. 129 (2022)]

- Median becomes negative around $\varepsilon \sim 700 \, \text{MeV} \, \text{fm}^{-3}$
 - \rightarrow Moderate evidence for Δ turning **negative** inside neutron stars

Bayes factor $\mathscr{B}_{\Delta\geq 0}^{\Delta<0} = 8.11$

[Ecker and Rezzolla, Astrophys. J. Lett. 939 (2022)] [Annala *et al.*, arXiv:2303.11356 (2023)] [Marczenko, McLerran, Redlich and Sasaki, Phys. Rev. C 107 (2023)]

► At higher energy densities again positive ∆ to reach asymptotic pQCD limit

Impact of pQCD

• Matching to pQCD at $n_{c,max}$ has only **negligible impact**

[Somasundaram, Tews and Margueron, arXiv:2204.14039 (2022)]

- ► Change matching to asymptotic pQCD from *n_{c,max}* to 10 *n*₀
 - \rightarrow Much smaller c_s^2 at high energy densities

[Gorda, Komoltsev, and Kurkela, arXiv:2204.11877 (2022)] [Komoltsev and Kurkela, Phys. Rev. Lett. 128 (2022)]

- \rightarrow Few changes in mass-radius, properties of 2.3 M_{\odot} neutron star change only slightly
- EoS beyond $n_{c,max}$ no longer constrained by astrophysical data
 - → Impact depends unconstrained interpolation to high densities [Essick, Legred, Chatziioannou, Han and Landry, arXiv:2305.07411 (2023)]

Perturbative QCD

• Connection of $(\mu_{NS}, n_{NS}, P_{NS})(\theta)$ to $(\mu_{pQCD}, n_{pQCD}, P_{pQCD})$

$$\int_{\mu_{\rm NS}}^{\mu_{\rm pQCD}} d\mu \ n(\mu) = P_{\rm pQCD} - P_{\rm NS} = \Delta P$$

 Causality and thermodynamic stability imply minimum and maximum values

$$\Delta P_{\min} = \frac{\mu_{pQCD}^2 - \mu_{NS}^2}{2\mu_{NS}} n_{NS} \quad \Delta P_{\max} = \frac{\mu_{pQCD}^2 - \mu_{NS}^2}{2\mu_{pQCD}} n_{pQCD}$$

Likelihood

$$\Pr(\mathcal{D}_{pQCD} | \Delta P(\theta), \mathcal{M}) = \begin{cases} 1 & \text{if } \Delta P(\theta) \in [\Delta P_{\min}(\theta), \Delta P_{\max}(\theta)] \\ 0 & \text{else} \end{cases}$$

[Komoltsev and Kurkela, Phys. Rev. Lett. 128 (2022)]

[Gorda, Komoltsev, and Kurkela, arXiv:2204.11877 (2022)]

Chiral nucleon-meson model

• Interactions of fermions via the exchange of effective mesons: Nambu-Goldstone boson π and heavy σ

 \rightarrow Short distance dynamics modelled by massive vector fields

[Floerchinger and Wetterich, Nucl. Phys. A 890-891 (2012)]

► Boson self-interactions and explicit symmetry breaking term

$$\mathscr{U}(\sigma, \pi) = (\pi, \sigma) + \cdots + m_{\pi}^{2} t_{\pi} (\sigma - t_{\pi})$$

- Expectation value $\langle \sigma \rangle$ dynamically creates nucleon mass

 $\rightarrow \langle \sigma \rangle / \langle \sigma \rangle_{vac} = \langle \sigma \rangle / f_{\pi}$ order parameter for chiral symmetry

Mean-field approximation

_

• Mean-field (MF) approximation: replace chiral boson fields by expectation values $\langle \sigma \rangle$ and $\langle \pi \rangle = 0$

→ Diverging fermionic vacuum contribution:
$$\delta \Omega_{\text{vac}} = -4 \int \frac{d^3 p}{(2\pi)^3} E$$

- ► Compute with dimensional regularisation in extended mean-field (EMF) approach [Skokov et al., Phys. Rev. D 82 (2010)]
- ► Adjust model parameters to reproduce empirical nuclear properties, i.e., liquid-gas phase transition

[Elliot et al., Phys. Rev. C 87 (2013)]

[LB, Kaiser and Weise, Eur. Phys. J. A 57 (2021)]

Functional Renormalization Group

- Additional fluctuations beyond vacuum contribution (chiral boson and nucleon loops)
 - → Include using non-perturbative Functional Renormalization Group (FRG) approach

[Drews and Weise, Prog. Part. Nucl. Phys. 93 (2017)]

- ► Initialize scale-dependent effective action $\Gamma_k[\Phi]$ at $k_{UV} \sim 4\pi f_{\pi}$
- Evolution $k \rightarrow 0$ governed by Wetterich's flow equation

$$k \frac{\partial \Gamma_k[\Phi]}{\partial k} = \frac{1}{2} \operatorname{Tr} \left[k \frac{\partial R_k}{\partial k} \cdot \left(\Gamma_k^{(2)}[\Phi] + R_k \right)^{-1} \right]$$

[Wetterich, Phys. Lett. B 301 (1993)]

• $\Gamma_k[\Phi]$ contains all **fluctuations** with $p^2 \ge k^2$ through regulator $R_k(p)$

 $\Gamma_{k=0}[\Phi]=\Gamma[\Phi]$

Phase structure

- *Mean-field:* unphysical **first-order order phase transition** to chirally restored phase
- ► Extended mean-field: vacuum contribution stabilizes order parameter
- ► FRG: further stabilization through additional fluctuations
 - \rightarrow **Smooth crossover** at densities $n > 6 n_0$ (with $n_0 = 0.16 \text{ fm}^{-3}$)
 - \rightarrow No phase transition in neutron star matter?

Likelihoods

- EoS supports masses between M_{\min} and $M_{\max}(\theta)$
- Choose flat mass prior and $M_{\rm min} = 0.5 M_{\odot}$

$$\Pr(M(\theta)) = \begin{cases} \frac{1}{M_{\max}(\theta) - M_{\min}} & \text{if } M \in [M_{\min}, M_{\max}(\theta)] \\ 0 & \text{else} \end{cases}$$

[Landry, Essick and Chatziioannou, Phys. Rev D 101 (2020)]

- When number of data increases incorporate mass population
 - \rightarrow Wrong population model causes a bias

[Mandel, Farr and Gair, Mon. Not. Roy. Astron. Soc. 486 (2019)]

► Assume Shapiro mass measurements Gaussian to compute likelihood

$$\Pr(M(\theta) | \mathscr{D}_{\text{Shapiro}}, \mathscr{M}) = \int_{M_{\min}}^{M_{\max}(\theta)} dM \, \mathscr{N}(M, \langle M \rangle, \sigma_M) \Pr(M(\theta))$$
$$\approx \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{M_{\max}(\theta) - \langle M \rangle}{\sqrt{2}\sigma_M}\right) \right] \Pr(M(\theta))$$

Likelihoods

- ► Data available as samples, approximate underlying probability with Kernel Density Estimation (KDE)
- ► Solve TOV equations to obtain $R(M, \theta)$ and $\Lambda(M, \theta)$
- NICER likelihood:

$$\Pr((M,R)(\theta) | \mathcal{D}_{\text{NICER}}, \mathcal{M}) = \int_{M_{\min}}^{M_{\max}(\theta)} dM \text{ KDE}(M,R(M,\theta)) \Pr(M(\theta))$$

GW likelihood:

$$\Pr((M,\Lambda)(\theta)|\mathscr{D}_{\mathsf{GW}},\mathscr{M}) = \int \mathsf{d}M_1 \int \mathsf{d}M_2 \; \mathsf{KDE}(M_1,M_2,\Lambda(M_1,\theta),\Lambda(M_2,\theta))$$

- Do not assume neutron star-neutron star merger events
 - \rightarrow GW likelihood not weighted by mass prior and $\Lambda(M) = 0$ for black holes
- Do not assumed fixed chirp mass $M_{\text{chirp}} = (M_1 M_2)^{3/5} (M_1 + M_2)^{-1/5}$

Conformal limit

- Derived from naive dimensional analysis and asymptotic limit

$$\mu \gg \Lambda_{\text{QCD}} \implies P \propto \mu^{d+1}$$
$$c_s^2 = \frac{\partial P}{\partial \varepsilon} \sim \frac{1}{d}$$

[Hippert, Fraga and Noronha, Phys. Rev. D 104 (2021)]

Expected to hold in all conformal field theories

[Bedaque and Steiner, Phys. Rev. Lett. 114 (2015)]

• Recent Bayesian analyses found speeds of sound $c_s^2 > 1/3$ inside neutron stars

[Landry, Essick and Chatziioannou, Phys. Rev. D 101 (2020)] [Gorda, Komoltsev, and Kurkela, arXiv:2204.11877 (2022)] [Altiparmak, Ecker, and Rezzolla, arXiv:2203.14974 (2022)] [Leonhardt *et al.*, Phys. Rev. Lett. 125 (2020)]

 \rightarrow Also $c_s^2 > 1/3$ in recent $N_C = 2$ **lattice QCD**

[lida and Itou, PTEP 2022 (2022)]

Hard Dense Loop resummation methods: conformal limit may be approached asymptotically from above

[Fujimoto and Fukushima, Phys. Rev. D 105 (2022)]

Parametrization dependence

- 'Old' segment-wise parametrisation: different ChEFT constraint, $c_s^2 = 1/3$ reached asymptotically from below
- Compared to skewed Gaussian plus logistic function to reach asymptotic limit $c_s^2 = 1/3$

$$c_{s}^{2}(x,\theta) = a_{1} \exp\left[-\frac{1}{2} \frac{(x-a_{2})^{2}}{a_{3}^{2}}\right] \left(1 + \exp\left[\frac{a_{6}}{\sqrt{2}} \frac{x-a_{2}}{a_{3}}\right]\right) + \frac{1/3 - a_{7}}{1 + \exp\left[-a_{5}(x-a_{4})\right]} + a_{7}$$

[Greif et al,, MNRAS 485, 5363 (2019)] [Tews, Margueron and Reddy, EPJA 55, 97 (2019)]

Very similar findings, results robust against change of parametrization and Prior

