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Ab initio nuclear theory
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and the original angular distributions are not reported.
Differential cross section measurements below Sp are avail-
able only for the ground state transition and only in the limited
energy range around the broad lowest energy 1− resonance
that corresponds to the level at Ex ¼ 9.59 MeV (Dyer and
Barnes, 1974; Redder et al., 1987; Ouellet et al., 1996; Fey,
2004; Assunção et al., 2006; Makii et al., 2009). These data
are used to determine the relative interference between the E1
and E2 components of the cross section, but it is possible that
measurements over other regions, where the two components
are closer in magnitude, would provide better constraint.
Above Sp, measurements are available in Larson and Spear
(1964) and Kernel, Mason, and Wimmersperg (1971) over the
broad states at Ex ¼ 12.45 (1−), 12.96 (2þ), and 13.10 (1−)
MeV. The Q coefficients (Rose, 1953; Longland et al., 2006)
used to correct for the extended geometry of the γ-ray
detectors are listed in Table VIII.
The best fit to the 12Cðα; γ0Þ16O angle-integrated data of

Brochard et al. (1973), Dyer and Barnes (1974), Kettner et al.
(1982), Redder et al. (1987), Kremer et al. (1988), Ouellet
et al. (1996), Roters et al. (1999), Gialanella et al. (2001),
Kunz et al. (2001), Fey (2004), Assunção et al. (2006), Makii
et al. (2009), Schürmann et al. (2011), and Plag et al. (2012) is
shown in Fig. 9. The simultaneous fit to the ground state
angular distribution differential cross section data (Dyer and
Barnes, 1974; Redder et al., 1987; Fey, 2004; Assunção et al.,
2006) is shown in Fig. 10 and the differential excitation curves
of Ouellet et al. (1996) and Makii et al. (2009) are shown
in Fig. 11.

C. Cascade transitions

While the cascade cross sections make a small contribution
to the total low-energy cross section (≈5% at Ec:m: ¼
300 keV), at higher energies they can dominate as shown
in Figs. 6 and 7. However, another compelling reason for their
accurate measurement would be to constrain the ANCs of the
subthreshold states, in particular, those of the Ex ¼ 6.92 and

7.12 MeV states, through their external capture contributions.
The Ex ¼ 6.13 MeV transition capture cross section, which is
external capture dominated, is also connected to the β-delayed
α emission spectrum through its ANC as discussed further in
Sec. VI.D.
Cascade transition excitation curves for the 12Cðα; γÞ16O

reaction have been measured by Kettner et al. (1982), Redder
et al. (1987), Matei et al. (2006), and Schürmann et al. (2011).
The measurements of these transitions are complicated exper-
imentally by the close energy spacing of the bound states at
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FIG. 9. Fit to the 12Cðα; γ0Þ16O cross section. (a) The E1
contribution from Dyer and Barnes (1974), Redder et al.
(1987), Kremer et al. (1988), Ouellet et al. (1996), Roters
et al. (1999), Gialanella et al. (2001), Kunz et al. (2001), Fey
(2004), Assunção et al. (2006), Makii et al. (2009), Schürmann et
al. (2011), and Plag et al. (2012). (b) The E2 contribution from
Redder et al. (1987), Ouellet et al. (1996), Roters et al. (1999),
Kunz et al. (2001), Fey (2004), Assunção et al. (2006), Makii
et al. (2009), Schürmann et al. (2011), and Plag et al. (2012).
(a) The angle-integrated cross section data of Brochard et al.
(1973) are also shown at high energy for comparison as they are
dominated by E1 capture. Note that the data have been subjected
to overall normalizations as determined by the fitting procedure.

TABLE VIII. Summary of Q coefficients for extended detector geometry corrections. In cases where the coefficients
were not reported they have been approximated using a GEANT4 simulation and the details of the geometry presented in the
reference; the source for these cases is indicated as “this work.”

Reference Detector Q1 Q2 Q3 Q4 Source

Larson and Spear (1964) 0.897 0.719 0.509 0.311 This work
Kernel, Mason, and Wimmersperg (1971) 0.989 0.968 0.937 0.896 This work
Dyer and Barnes (1974) 0.955 0.869 0.750 0.610 Table 5.5 of

Sayre (2011)
Ophel et al. (1976) 0.990 0.969 0.948 0.900 This work
Ouellet et al. (1996) 28° 0.9719 0.9173 0.8395 0.7431 Table 1

60° 0.9675 0.9047 0.8162 0.7061
90° 0.9541 0.8670 0.7474 0.6068
90° 0.9543 0.8675 0.7486 0.6091
120° 0.9762 0.9296 0.8672 0.7787
143° 0.9831 0.9500 0.9017 0.8400

Redder et al. (1987) 0.92 0.75 In text
Assunção et al. (2006) 0.989(2) 0.968(4) 0.936(8) 0.895(14) In text
Makii et al. (2009) 40° 0.980 0.947 0.898 0.837 Table VI

90° 0.980 0.946 0.897 0.835
130° 0.980 0.948 0.901 0.841

Plag et al. (2012) 0.948 0.927 0.862 0.775 Eq. (2)

R. J. deBoer et al.: The 12Cðα; γÞ16O …

Rev. Mod. Phys., Vol. 89, No. 3, July–September 2017 035007-41

deBoer et al., Rev. Mod. Phys. 89, 035007

12C(α,γ)16O astrophysical S factor
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Ab initio nuclear theory: Towards neutron stars and hypernuclei

J. Weber (arXiv:astro-ph/0008376)

Logoteta, Vidana, Bombaci (Eur. Phys. J. A (2019) 55: 207 ) source://people.physics.anu.edu.au/ ecs103/chart3d/
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Yukawa Potential → Meson Exchange Models → Chiral Interactions

□ Pion-exchange potential: Governs the long tail of
nuclear forces, Yukawa (1935).

□ Meson-exchange potential: Models intermediate-range
nuclear forces, Bonn potential - Erkelenz (1974).

□ Meson-exchange model for YN interactions:
extension of Bonn potential, Jülich potential (1989).

□ Phenomenological potential models,
CD-Bonn, Nijmegen, AV18, Stony Brook, Paris,

Urbana-Argonne, etc.

Contributions by Dr. Klaus Erkelenz:

→ A non-static OBEP for nuclear structure calculations, Erkelenz et al. (1969).

→ One-boson exchange potential and nuclear matter properties, Erkelenz et al. (1971).

→ Relativistic OBEP and two-nucleon data, Erkelenz et al. (1972).

→ Relativistic OBEP and nuclear matter properties, Erkelenz et al. (1972).

→ Neutron matter with a relativistic OBEP, Erkelenz et al. (1973).

→ An improved relativistic OBEP for two-nucleon and infinite nuclear matter data, Erkelenz et

al. (1974).
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Outline

■ Introduction

■ Nuclear forces from QCD (EFTs)

■ Lattice effective field theory

■ Wavefunction matching method

■ Recent progress

■ Nuclear forces on the lattice

■ Summary
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Nuclear forces from QCD
■ Quantum chromodynamics (QCD) describes the strong forces by

confining quarks (and gluons) into baryons and mesons.
■ Translating QCD directly into nuclear forces:
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(Λχ ∼ chiral limit)
mu ,md ,ms → 0

"separation of scales"

■ Effective theories provide the solution to bridge the gap between QCD
and the nuclear interactions

S. Weinberg, Phys. Lett. B 251 (1990) 288, Nucl. Phys. B363 (1991) 3, Phys. Lett. B 295 (1992) 114.
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Chiral EFT for nucleons: nuclear forces

Chiral effective field theory organizes the nuclear interactions as an expansion in
powers of momenta and other low energy scales such as the pion mass (Q/Λχ).

The nuclear interactions as a series of increasing complexity:
Rep. Prog. Phys. 75 (2012) 016301 N Kalantar-Nayestanaki et al

2N LO

N LO3

NLO

LO

3N force 4N force2N force

Figure 4. Hierarchy of nuclear forces in chiral EFT based on Weinberg’s power counting. Solid and dashed lines denote nucleons and
pions, respectively. Solid dots, filled circles and filled squares refer, respectively, to the leading, subleading and sub-subleading vertices in
the effective Lagrangian. The crossed square denotes 2N contact interactions with 4 derivatives.

1 GeV, respectively. A recent review on the methodology and
applications of chiral perturbation theory in the Goldstone–
boson and single-nucleon sectors can be found in [66].

Chiral EFT, however, cannot be directly applied to
low-energy few-nucleon scattering. The strong nature of
the nuclear force that manifests itself in the appearance of
self-bound atomic nuclei invalidates a naive application of
perturbation theory. Weinberg pointed out that the breakdown
of perturbation theory can be traced back to the infrared
enhancement of reducible diagrams that involve few-nucleon
cuts [67, 68]. The irreducible part of the amplitude that gives
rise to the nuclear force is, however, not affected by the infrared
enhancement and is thus accessible within chiral EFT. These
important observations have triggered intense research activity
towards the systematic derivation of the nuclear forces in chiral
EFT and their applications to the nuclear few- and many-body
problem.

It should also be emphasized that an EFT can be
formulated that is only valid at typical momenta well below
the pion mass. This framework allows one to take into
account the unnaturally large NN scattering lengths but loses
the connection with the chiral symmetry of QCD. It has
been used with great success not only for nuclear systems
[69, 14]. This so-called pion-less EFT requires a 3NF in
leading order. The corresponding hard scale is given by
the pion mass and, therefore, intermediate-energy observables
cannot be predicted within this framework. In the following,
we restrict ourselves to chiral EFT.

The EFT expansion of the nuclear force based on
the standard chiral power counting (i.e. assuming that all
operators in the effective Lagrangian scale according to a naive
dimensional analysis) is visualized in figure 4.

It provides a natural qualitative explanation of the
observed hierarchy of two-, three- and more-nucleon forces
with 〈V2N〉 � 〈V3N〉 � 〈V4N〉 . . .. The expansion of the 2NF
has the form

V2N = V
(0)

2N + V
(2)

2N + V
(3)

2N + V
(4)

2N + · · · , (1)

with the superscripts referring to the power of the expansion
parameter Q/�χ . The long-range part of the nuclear
force is dominated by 1π -exchange with the 2π -exchange
contributions starting at next-to-leading order (NLO). The
expressions for the potential up to next-to-next-to-leading
order (N2LO) in the heavy-baryon formulation [70, 71] are
rather compact and have been independently derived by several
authors using a variety of different methods [72–75]. 2π - and
3π -exchange contributions at next-to-next-to-next-to-leading
order (N3LO) have been worked out by Kaiser [76–79] and
are considerably more involved, see also [80]. While the
2π -exchange at NLO and, especially, at N2LO generates a
rather strong potential at distances of the order of the inverse
pion mass [74], the leading 3π -exchange contributions turn out
to be negligible. The N3LO contributions to the 2π -exchange
potential were also derived in the covariant formulation of
chiral EFT [81] by Higa et al [82, 83]. The LECs entering
the pion-exchange contributions up to N3LO are known from
pion–nucleon scattering and related processes [84–86]. We
note that some of them, especially the ones from L(3)

πN , are
presently not very accurately determined. In the isospin
limit, the short-range part of the potential involves 2, 9, 24
independent terms at LO, NLO/N2LO, N3LO, respectively.
The corresponding LECs were fixed from the two-nucleon
data leading to the accurate N3LO potentials of Entem and
Machleidt (EM) [87] and Epelbaum, Glöckle and Meißner
(EGM) [88]. These two potentials differ in the treatment of
relativistic corrections (including the form of the employed
dynamical equation), IB terms and the form of the regulator
functions. There are also differences in the adopted values
of certain pion–nucleon LECs. Finally, EGM provide an
estimation of the theoretical uncertainty by means of the
variation of the cutoffs in some natural ranges. This important
issue is not addressed in [87], where a single excellent
fit to neutron–proton (proton–proton) scattering data with
χ2/datum = 1.10 (χ2/datum = 1.50) in the energy range
from 0 to 290 MeV is given. We refer the reader to [87, 88] for
more details. In figure 5, we compare NN phase shifts obtained
with these models with predictions from phenomenological

5
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Lattice effective field theory

□ Lattice effective field theory is a powerful numerical method formulated in the
framework of chiral effective field theory.

𝑎 𝐿 

Nucleons
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Lattice formulation of chiral EFT

■ Lattice formulation of nuclear forces in the framework of chiral EFT:

□ a simpler decomposition into spin channels

□ accurate phase shifts and binding energies.

V S,I,J
L,L′ (n) = ∑

Iz ,Jz

∑
Sz ,Lz

∑
S′

z ,L′
z

(
⟨SSz ,LLz |JJz ⟩

[
a(n) ∇2M R∗

L,Lz
(∇) a(n)

]sNL

S,Sz ,I,Iz

)†

× ⟨SS′
z ,L

′L′z |JJz ⟩
[
a(n) ∇2M R∗

L′,L′
z
(∇) a(n)

]sNL

S,S′
z ,I,Iz

[a(n) a(n′)]sNL
S,Sz ,I,Iz

= ∑
i,j,i ′,j ′

asNL
i,j (n)Mii ′ (S,Sz )Mjj ′ (I, Iz ) asNL

i,j (n′)

Li, SE, Epelbaum, Lee, Lu, Meißner Phys. Rev. C 98, 044002 (2018)
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Chiral EFT for nucleons: NN scattering phase shifts

□ formulate the lattice action in the framework of chiral effective field theory

□ fit the unknown coefficients of the short-range lattice interactions to empirical
phase shiftsRep. Prog. Phys. 75 (2012) 016301 N Kalantar-Nayestanaki et al

2N LO

N LO3

NLO

LO

3N force 4N force2N force

Figure 4. Hierarchy of nuclear forces in chiral EFT based on Weinberg’s power counting. Solid and dashed lines denote nucleons and
pions, respectively. Solid dots, filled circles and filled squares refer, respectively, to the leading, subleading and sub-subleading vertices in
the effective Lagrangian. The crossed square denotes 2N contact interactions with 4 derivatives.

1 GeV, respectively. A recent review on the methodology and
applications of chiral perturbation theory in the Goldstone–
boson and single-nucleon sectors can be found in [66].

Chiral EFT, however, cannot be directly applied to
low-energy few-nucleon scattering. The strong nature of
the nuclear force that manifests itself in the appearance of
self-bound atomic nuclei invalidates a naive application of
perturbation theory. Weinberg pointed out that the breakdown
of perturbation theory can be traced back to the infrared
enhancement of reducible diagrams that involve few-nucleon
cuts [67, 68]. The irreducible part of the amplitude that gives
rise to the nuclear force is, however, not affected by the infrared
enhancement and is thus accessible within chiral EFT. These
important observations have triggered intense research activity
towards the systematic derivation of the nuclear forces in chiral
EFT and their applications to the nuclear few- and many-body
problem.

It should also be emphasized that an EFT can be
formulated that is only valid at typical momenta well below
the pion mass. This framework allows one to take into
account the unnaturally large NN scattering lengths but loses
the connection with the chiral symmetry of QCD. It has
been used with great success not only for nuclear systems
[69, 14]. This so-called pion-less EFT requires a 3NF in
leading order. The corresponding hard scale is given by
the pion mass and, therefore, intermediate-energy observables
cannot be predicted within this framework. In the following,
we restrict ourselves to chiral EFT.

The EFT expansion of the nuclear force based on
the standard chiral power counting (i.e. assuming that all
operators in the effective Lagrangian scale according to a naive
dimensional analysis) is visualized in figure 4.

It provides a natural qualitative explanation of the
observed hierarchy of two-, three- and more-nucleon forces
with 〈V2N〉 � 〈V3N〉 � 〈V4N〉 . . .. The expansion of the 2NF
has the form

V2N = V
(0)

2N + V
(2)

2N + V
(3)

2N + V
(4)

2N + · · · , (1)

with the superscripts referring to the power of the expansion
parameter Q/�χ . The long-range part of the nuclear
force is dominated by 1π -exchange with the 2π -exchange
contributions starting at next-to-leading order (NLO). The
expressions for the potential up to next-to-next-to-leading
order (N2LO) in the heavy-baryon formulation [70, 71] are
rather compact and have been independently derived by several
authors using a variety of different methods [72–75]. 2π - and
3π -exchange contributions at next-to-next-to-next-to-leading
order (N3LO) have been worked out by Kaiser [76–79] and
are considerably more involved, see also [80]. While the
2π -exchange at NLO and, especially, at N2LO generates a
rather strong potential at distances of the order of the inverse
pion mass [74], the leading 3π -exchange contributions turn out
to be negligible. The N3LO contributions to the 2π -exchange
potential were also derived in the covariant formulation of
chiral EFT [81] by Higa et al [82, 83]. The LECs entering
the pion-exchange contributions up to N3LO are known from
pion–nucleon scattering and related processes [84–86]. We
note that some of them, especially the ones from L(3)

πN , are
presently not very accurately determined. In the isospin
limit, the short-range part of the potential involves 2, 9, 24
independent terms at LO, NLO/N2LO, N3LO, respectively.
The corresponding LECs were fixed from the two-nucleon
data leading to the accurate N3LO potentials of Entem and
Machleidt (EM) [87] and Epelbaum, Glöckle and Meißner
(EGM) [88]. These two potentials differ in the treatment of
relativistic corrections (including the form of the employed
dynamical equation), IB terms and the form of the regulator
functions. There are also differences in the adopted values
of certain pion–nucleon LECs. Finally, EGM provide an
estimation of the theoretical uncertainty by means of the
variation of the cutoffs in some natural ranges. This important
issue is not addressed in [87], where a single excellent
fit to neutron–proton (proton–proton) scattering data with
χ2/datum = 1.10 (χ2/datum = 1.50) in the energy range
from 0 to 290 MeV is given. We refer the reader to [87, 88] for
more details. In figure 5, we compare NN phase shifts obtained
with these models with predictions from phenomenological
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Ab initio nuclear theory: recent progress in NLEFT
a = 1.32 fm and pmax = π/a = 471 MeV
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Lattice Monte Carlo calculations: Euclidean time projection

Euclidean Time

⟨ψI | |ψI⟩

τ = 0 τ = Lt at

□ construct an initial/final state of nucleons, |ψI⟩, as a Slater
determinant of free-particle standing waves on the lattice.

□ evolve nucleons forward in Euclidean time, e−HLO τ |ψI⟩,
where τ = Lt at .

□ The evolution in Euclidean time automatically incorporates the
induced deformation, polarization and clustering.
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Lattice Monte Carlo calculations

Projection Monte Carlo uses a given initial state, |ψI⟩, to evaluate a
product of a string of transfer matrices M̂.

Z (Lt ) = ⟨ψI | M̂ M̂ . . . M̂ M̂ |ψI⟩

string of Lt transfer matrices

In the limit of large Euclidean time the evolution operator e−HLO τ

suppress the signal beyond the low-lying states, and the ground state
energy can be extracted by

lim
Lt→∞

⟨ψI | M̂Lt /2 HLO M̂Lt /2 |ψI⟩
⟨ψI | M̂Lt |ψI⟩

= E0
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Lattice Monte Carlo calculations

perturbative higher order calculations

ho = NLO, NNLO, · · ·
where the potential Vho is treated perturbatively. Therefore, the higher
order corrections to the ground state energy can be computed as,

∆Eho = lim
Lt→∞

⟨ψI | M̂Lt /2 HLO M̂Lt /2 |ψI⟩
⟨ψI | M̂Lt |ψI⟩
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Auxiliary field Monte Carlo
Use a Gaussian integral identity

exp

[
−C

2

(
N†N

)2
]
=

√
1

2π

∫
ds exp

[
−s2

2
+
√
−C s

(
N†N

)]

s is an auxiliary field coupled to the particle density. Each nucleon evolves as if a
single particle in a fluctuating background of pion fields and auxiliary fields.

Euclidean Time

⟨ψI | |ψI⟩

τ = 0 τ = Lt at



16/49

Scattering and reactions: Adiabatic projection method

The method constructs a low energy effective theory for the clusters

Use initial states parameterized by the
relative spatial separation between
clusters, and project them in Euclidean
time.

|ψR
I ⟩ = ∑

r⃗
|⃗r + R⃗⟩1 ⊗ |⃗r ⟩2

𝑅 

𝑛𝑥, 𝑛𝑦  

𝑛𝑥
′ , 𝑛𝑦

′   

|ψR
I ⟩τ = e−H τ |ψR

I ⟩ dressed cluster state

The adiabatic projection in Euclidean time gives a
systematically improvable description of the low-
lying scattering cluster states.
In the limit of large Euclidean projection time the
description becomes exact.

SE & Lee. PRC 90 064001 (2014).

SE, Lee, Meißner & Rupak EPJA 52, 6, 174 (2016).

. SE, Lee, Rupak, Epelbaum, Krebs, Lähde, Luu, & Meißner. Nature 528, 111-114 (2015).
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Adiabatic projection method

Euclidean Time

⟨ψR
I | |ψR′

I ⟩
τ = 0 τ = Lt at

Hamiltonian matrix

[Hτ ]
J,Jz
R,R′ =

J,Jz
τ ⟨ψR

I |H |ψR′

I ⟩J,Jz
τ

Norm matrix

[Nτ ]
J,Jz
R,R′ =

J,Jz
τ ⟨ψR

I |ψR′

I ⟩J,Jz
τ

[Ha
τ ]

J,Jz

R⃗,R⃗′ =
[
N−1/2

τ Hτ N−1/2
τ

]J,Jz

R⃗ R⃗′
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Perturbative calculations
Toy model:

0 5 10 15
r (fm)

-30
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-5

0

V(
r)

V
V′

0 5 10 15

r (fm)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(r
)

   ′

(0
)

E E ′

−2.010472457971 −2.445743725635
1.775231321023 1.721517536958
6.206769197086 6.118307106128
12.776191791947 12.667625238436
21.337188185570 21.213065578266

Perturbative energies
q ⟨ψ(0) |H ′ |ψ(q)⟩
0 −2.43080610
1 −2.44610114
2 −2.44574140
3 −2.44575370
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Perturbative calculations
Toy model:

0 5 10 15
r (fm)

-40

-20

0
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V
(r

)

soft
high-fidelity

0 5 10 15
r (fm)

0

0.05
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(r)

S
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)

hf

Esoft Ehf
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q ⟨ψ(0)
S |H |ψ(q)

S ⟩
0 −1.74722993
1 −2.89957307
2 −2.10036797
3 −2.26376481
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Wavefunction Matching

□ Hχ : –severe sign oscillation, –derived from the underlying theory.
□ Hsoft : –tolerable sign oscillation, –many-body observables with a fair agreement.

Can unitary transformation create a new chiral
Hamiltonian which is (first order) perturbation
theory friendly?

H ′
χ = U† Hχ U

□ Let |ψ0
χ⟩ be the normalized lowest eigenstate of Hχ.

□ Let |ψ0
soft⟩ be the normalized lowest eigenstate of Hsoft.

UR′,R = θ(r − R) δR′,R + θ(R′ − r ) θ(R − r ) |ψ⊥
χ ⟩ ⟨ψ⊥

soft|

SE et al. Nature 630, 8015, 59-63 (2024)
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Wavefunction Matching
□ Hsoft : –tolerable sign oscillation, –many-body observables with a fair agreement.
□ Hχ : –severe sign oscillation, –derived from the underlying theory.

Unitary transformation can create a new chiral Hamiltonian which is (first
order) perturbative friendly

H ′
χ = U† Hχ U → H ′

χ = Hsoft + (H ′
χ − Hsoft)

SE et al. Nature 630, 8015, 59-63 (2024)
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Three-nucleon forces
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Wavefunction Matching: Perturbative calculations
Toy model:

0 5 10 15
r (fm)

-40

-20

0

20

40

60

V
(r

)

soft
high-fidelity

0 5 10 15
r (fm)

0

0.05

0.1

0.15

(r)

S

hf

hf′

(0
)

Ehf E ′
hf

−2.444693273 −2.444693273
1.769682286 1.769682286
6.282284485 6.282284485
13.008087181 13.008087181
21.786534446 21.786534446

q ⟨ψ(0)
S |H ′ |ψ(q)

S ⟩
R = 0.00 R = 1.32 R = 1.86 R = 2.28 R = 3.22 fm

0 −1.747230 −2.055674 −2.226685 −2.312220 −2.402507
1 −2.899573 −2.558509 −2.477194 −2.457550 −2.446214
2 −2.100368 −2.389579 −2.430212 −2.439585 −2.443339
3 −2.263765 −2.414809 −2.437676 −2.441072 −2.443233
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Ab initio nuclear theory: recent progress in NLEFT
a = 1.32 fm and pmax = π/a = 471 MeV
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Ab initio nuclear theory: recent progress in NLEFT

a = 1.32 fm and pmax = π/a = 471 MeV

Nuclei BQ0 MeV BQ2 MeV BQ4 MeV Experiment
Eχ,d 1.7928 2.1969 2.2102 2.2246
⟨ψ0

soft|Hχ,d |ψ0
soft⟩ 0.4494 0.3445 0.6208

⟨ψ0
soft|H ′

χ,d |ψ0
soft⟩ 1.6496 1.9772 2.0075
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Chiral interactions at N3LO – 2NFs + 3NFs

Work Constraints Predictions

NCSM, Barrett et al., Nogga et al. BE of 3H and 4He Spectrum of 6Li and 7Li

NCSM, Navratil et al. 3H, 6Li, 10B, 12C 4He, 6Li, 10,11B, 12,13C

NCSM, Maris et al., Roth et al. BE of 3H and 3H β decay Structures of A = 7,8. 4He, 6Li, 12C and 16O

CC, Hagen et al. BE of 3H and 3H β decay EoS of nucleonic matter

BMBPT, Tichai et al. BE of 3H and 3H β decay BE of 16−26O, 36−60Ca and 50−78Ni

IT-NCSM, Roth et al. BE of 3H and 4He, and 3H β decay BE of 4He, 16O, 40Ca

CC, Roth et al. BE of 3H and 4He, and 3H β decay BE of 16,24O, 40,48Ca

SCGF, Cipollone et al. BE of 3H and 4He, and 3H β decay BE of 13,27N, 14,28O and 15,29F

AFDMC, Lynn et al.
BE of 3H and n-4He P-wave phase

shifts
EoS of nucleonic matter

MBPT, Bogner et al., Hebeler et al.,

Drischler et al., Wienholtz et al., Si-

monis et al.

BE 3H and Rc of 4He

symmetric and asymmetric NM, BE of 48−58Ca, spectrum of

sd-shell nuclei with 8 ≤ Z ,N ≤ 20, BE and Rc of open- and

closed-shell nuclei up to A = 78

NCCI, Epelbaum et al., Maris et al.

BE of 3H, nd spin-doublet scatter-

ing length and the pd differential

cross section

the spectrum of light nuclei with A = 3–16, elastic nd scattering

and in the deuteron breakup reactions, properties of the A = 3, 4

nuclei, and for spectra of p-shell nuclei up to A = 16, BE and Rc
of the oxygen and calcium isotope chains

CC, Carlsson et al., Ekström et al.,

Hagen et al.

BE of 3H, 3,4He, 14Li and
16,22,24,25O

Rc and BE of nuclei up to 40Ca, symmetric nuclear matter, neu-

tron skin of 48Ca, structure of 78Ni

NCSM, IM-SRC, IM-NCSM,

Hüther et al.
BE of 3H and 16O

Rc and BE of 4He, 14−26O, 36−52Ca and 48−78Ni, the spec-

trum of 7Li, 8Be, 9Be and 10B

CC, Jiang et al. properties of A ≤ 4 properties of nuclei from A = 16 − 132
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Ab initio nuclear theory: recent progress in NLEFT
a = 1.32 fm and pmax = π/a = 471 MeV

a b c

d e f g h

SE et al. Nature 630, 8015, 59-63 (2024)

SE and Meißner in progress.
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Ab initio nuclear theory: recent progress in NLEFT

a = 1.32 fm and pmax = π/a = 471 MeV
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Ab initio nuclear theory: recent progress in NLEFT

a = 1.32 fm and pmax = π/a = 471 MeV
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Ab initio nuclear theory: recent progress in NLEFT

a = 1.32 fm, and pmax = π/a = 471 MeV
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Ab initio nuclear theory: recent progress in NLEFT

a = 1.32 fm, and pmax = π/a = 471 MeV
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Ab initio nuclear theory: recent progress in NLEFT

a = 1.32 fm, and pmax = π/a = 471 MeV
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Alpha-carbon scattering at N3LO
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Ab initio alpha-carbon scattering at N3LO
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Ab initio nuclear theory: recent progress: towards hypernuclei
a = 1.32 fm and pmax = π/a = 471 MeV
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Chiral nuclear forces on the lattice

□ HS : tolerable sign oscillation, the g.s. wave function |ψS
0⟩.

□ Hχ : severe sign oscillation, the g.s. wave function |ψ0⟩.

Use H ′
χ = U† Hχ U and define H ′

χ = HS + (H ′
χ − HS)

VLO = V sNL,sL
1S0

+ V sNL,sL
3S1

+ VOPE

VLO = V sNL,sL
SU4 + VOPE

V /π
LO = V C2,sNL,sL

SU4 + V C3
SU4

□✓ Does every chiral EFT interaction give well controlled and reliable results
for heavier systems?

□✓ Is the convergence of higher-order terms under control?
SE, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, Lee, Rupak, PRL 117, 132501 (2016)
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Degree of locality of nuclear forces

Nucleus A (LO) B (LO) A (LO + Coulomb) B (LO + Coulomb) Experiment
3H -7.82(5) -7.78(12) -7.82(5) -7.78(12) -8.482

3He -7.82(5) -7.78(12) -7.08(5) -7.09(12) -7.718
4He -29.36(4) -29.19(6) -28.62(4) -28.45(6) -28.296
8Be -58.61(14) -59.73(6) -56.51(14) -57.29(7) -56.591
12C -88.2(3) -95.0(5) -84.0(3) -89.9(5) -92.162
16O -117.5(6) -135.4(7) -110.5(6) -126.0(7) -127.619

20Ne -148(1) -178(1) -137(1) -164(1) -160.645

E8Be
E4He

= 1.997(6)

E12C
E4He

= 3.00(1)

E16O
E4He

= 4.00(2)

E20Ne
E4He

= 5.03(3)

29	

������������������������������������

SE, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, Lee, Rupak, PRL 117, 132501 (2016)
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Nuclear binding near a quantum phase transition

Consider a one-parameter family of interactions: V = (1 − λ)V A
LO + λ V B

LO

������!

������!

������!

�����!

λ	

E�	–	Eα�A/4	
��αα����∞	�αα����	

���������	 ��������������	

λ��	λ��	 λ��	 λ�	

λ����	 λ����	

25	

There is a quantum phase transition at the point where the α-α scattering length aαα vanishes,

and it is a first-order transition from a Bose-condensed α-particle gas to a nuclear liquid.

SE, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, Lee, Rupak, PRL 117, 132501 (2016)

Stoff, Phys. Rev. A 49 (1994) 3824
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Ground state energies at LO

We can probe the degree of locality only by many-body calculations, and we consider
an SU4-symmetric potential,

VLO = V sNL,sL
SU4 + VOPE + VCoulomb

����

����

����

���

��
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����������������������

SE, Epelbaum, Krebs, Lähde, Lee, Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017)
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Essential elements for nuclear binding
Consider the following potential in the framework of pionless effective field theory to
probe the degree of locality from many-body calculations,

V LO
/π = V C2,sNL,sL

SU4 + V C3
SU4 + VCoulomb

3
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Figure 1. The correlation plot for the calculated volume-energy con-
stant aV and surface-energy constant aS . The square, diamond and
square region denote the results fitted with Macroscopic-Microscopic
model [44], Finite Range Liquid Drop Model [43], Mean Field Mod-
els [45], respectively.

For medium mass nuclei with A ≥ 16, the binding energies
can be well parameterized with the Bethe-Weizsäcker mass
formula,

B(A) = aV A− aSA
2
3 + ECoulomb + · · · , (4)

where aV and aS are volume-energy and surface-energy con-
stants, respectively, ECoulomb is the Coulomb energy, and the
ellipsis represents the symmetry energy, pairing energy, shell
correction energy, etc. To avoid fitting complexities not ac-
curately captured in our minimal nuclear interaction, we fit
only N = Z even-even nuclei, for which the symmetry en-
ergy vanishes and the pairing energy varies smoothly. The
shell correction energy is known to be much smaller than the
macroscopic contribution in this mass region [43] and thus the
first three terms appearing in Eq. (4) dominate.

For each interaction we use the calculated binding energies
with 16 ≤ A ≤ 40 to extract the liquid drop constants aV
and aS . We observe prominent shell effects for these nuclei,
and the binding energy per nucleon fluctuates around the liq-
uid drop values with maxima at the magic numbers. In the
fitting procedure the shell effects across a whole shell are av-
eraged out, thus decreasing uncertainties for the liquid drop
constants. The aS-aV plot is shown in Fig. 1. We can see
a linear correlation between these constants. The values of
aS and aV both increase as the strength of the local part of
the interaction increases. For comparison, we also show other
values of these constants in the literature, in which the masses
throughout the whole nuclide chart are used in the fits. We
found that the interaction NL50 gives a value of aV closest to
other estimations. This value of aV still gives an estimate of
the energy per nucleon at saturation. The uncertainty in aS is
large but still matches the empirical values.

In Table I we show the binding energies and charge radii for
selected nuclei. For comparison we also list the experimental
values and the calculated Coulomb energy. While the 3H en-
ergy is exact due to the fitting procedure, all the other values
are predictions. The largest relative error in binding energy
4.5% occurs for 16O. While most of the charge radii are over-
estimated, the largest relative error is only 8.0% and occurs

Table I. The calculated binding energies and charge radii of 3H, 3He
and selected alpha-like nuclei compared with experimental values.
The Coulomb interaction is taken into account perturbatively. All
energies are in MeV and radii in fm. Experimental binding energies
are taken from Ref. [47] and radii from Ref. [48].

B Exp. Rch Exp. Cou.
3H 8.48(2) 8.48 1.90(1) 1.76 0.0
3He 7.75(2) 7.72 1.99(1) 1.97 0.73(1)
4He 28.89(1) 28.3 1.72(1) 1.68 0.80(1)
16O 121.9(1) 127.6 2.74(1) 2.70 13.9(1)
20Ne 161.6(1) 160.6 2.95(1) 3.01 20.2(1)
24Mg 193.5(2) 198.3 3.13(1) 3.06 28.0(1)
28Si 235.8(4) 236.5 3.26(1) 3.12 37.1(2)
40Ca 346.8(6) 342.1 3.42(1) 3.48 71.7(4)
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Figure 2. The calculated binding energies from 3H to 48Ca. The solid
symbols denote the lattice results and the open symbols denote the
experimental values. Different symbols and colors denote different
element. The Coulomb interaction is taken into account perturba-
tively. The experimental values are taken from Ref. [47].

for 3H. For the lattice calculations of the nuclear charge radii,
we have taken into account the charge radius of the proton.

In order to examine the global behavior, here we calcu-
late the binding energies for totally 86 even-even nuclei up to
A=48. For each isotope chain we only consider the nuclides
known to be bound in experiments. The results are shown
and compared with the data in Fig. 2. Because the interaction
has an exact SU(4) symmetry, we are free of the sign problem
and can calculate the binding energies with high precision. In
Fig. 2 all of the Monte Carlo error bars are smaller than the
size of the symbols. The remaining errors due to imaginary
time and volume extrapolations are also small but not explic-
itly shown in the plot. In Fig. 2 we see that the gross feature
of the binding energies along each isotopic chain are well re-
produced. In particular, the slopes of each isotopic curve on
the proton-rich side are close to experimental value. However,
since we are using a simple central force without any spin or
isospin dependence, the discrepancy is somewhat larger on the
neutron-rich side.

The charge density profile is another important physical

Lu, Li, SE, Lee, Epelbaum, Meißner, Phys. Lett. B, 797, 134863 (2019)
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Essential elements for nuclear binding
□ Ab-initio nuclear thermodynamics,

Lu, Li, SE, Lee, Drut, Lahde, Epelbaum, Meißner, Phys. Rev. Lett. 125, 192502 (2020)

□ Emergent geometry and duality in the carbon nucleus,
Shen, SE, Lahde, Lee, Lu, Meißner, Nature Commun. 14, 2777 (2023)

□ Ab-initio study of nuclear clustering in hot dilute nuclear matter,
Ren, SE, Lahde, Lee, Meißner, PLB 850, 138463 (2024)

□ Ab-initio calculation of the alpha-particle monopole transition form factor,
Meißner, Shen, SE, Lee, PRL 132, 6, 062501 (2024)

□ Ab-initio calculation of hyper-neutron matter,
Tong, SE, Meißner, arXiv:2405.01887
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Summary

□ Nuclear forces in the framework of chiral effective field theory are well-established,
and it is very important time for ab initio methods to make predictions in many-
nucleon system using these forces.

□ Understanding of the connection between the degree of locality of nuclear forces
and nuclear structure has led to a more efficient set of lattice chiral EFT interac-
tions.

□ Improving QMC calculations with perturbation theory for many-body systems in
nuclear physics is crucial to be able to use more realistic interactions in ab initio
nuclear theory. Phys. Rev. Lett. 128, 242501 (2022)

□ A recently developed method so called the wave function matching provides a
rapid convergence in perturbation theory for many-body nuclear physics. Using
this new method now we are able to calculate the nuclear binding energies, neu-
tron matter, symmetric nuclear matter and charge radii of nuclei simultaneously
in very good agreements with the experimental results.

Thanks!
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Degree of locality of nuclear forces
Rep. Prog. Phys. 75 (2012) 016301 N Kalantar-Nayestanaki et al

2N LO

N LO3

NLO

LO

3N force 4N force2N force

Figure 4. Hierarchy of nuclear forces in chiral EFT based on Weinberg’s power counting. Solid and dashed lines denote nucleons and
pions, respectively. Solid dots, filled circles and filled squares refer, respectively, to the leading, subleading and sub-subleading vertices in
the effective Lagrangian. The crossed square denotes 2N contact interactions with 4 derivatives.

1 GeV, respectively. A recent review on the methodology and
applications of chiral perturbation theory in the Goldstone–
boson and single-nucleon sectors can be found in [66].

Chiral EFT, however, cannot be directly applied to
low-energy few-nucleon scattering. The strong nature of
the nuclear force that manifests itself in the appearance of
self-bound atomic nuclei invalidates a naive application of
perturbation theory. Weinberg pointed out that the breakdown
of perturbation theory can be traced back to the infrared
enhancement of reducible diagrams that involve few-nucleon
cuts [67, 68]. The irreducible part of the amplitude that gives
rise to the nuclear force is, however, not affected by the infrared
enhancement and is thus accessible within chiral EFT. These
important observations have triggered intense research activity
towards the systematic derivation of the nuclear forces in chiral
EFT and their applications to the nuclear few- and many-body
problem.

It should also be emphasized that an EFT can be
formulated that is only valid at typical momenta well below
the pion mass. This framework allows one to take into
account the unnaturally large NN scattering lengths but loses
the connection with the chiral symmetry of QCD. It has
been used with great success not only for nuclear systems
[69, 14]. This so-called pion-less EFT requires a 3NF in
leading order. The corresponding hard scale is given by
the pion mass and, therefore, intermediate-energy observables
cannot be predicted within this framework. In the following,
we restrict ourselves to chiral EFT.

The EFT expansion of the nuclear force based on
the standard chiral power counting (i.e. assuming that all
operators in the effective Lagrangian scale according to a naive
dimensional analysis) is visualized in figure 4.

It provides a natural qualitative explanation of the
observed hierarchy of two-, three- and more-nucleon forces
with 〈V2N〉 � 〈V3N〉 � 〈V4N〉 . . .. The expansion of the 2NF
has the form

V2N = V
(0)

2N + V
(2)

2N + V
(3)

2N + V
(4)

2N + · · · , (1)

with the superscripts referring to the power of the expansion
parameter Q/�χ . The long-range part of the nuclear
force is dominated by 1π -exchange with the 2π -exchange
contributions starting at next-to-leading order (NLO). The
expressions for the potential up to next-to-next-to-leading
order (N2LO) in the heavy-baryon formulation [70, 71] are
rather compact and have been independently derived by several
authors using a variety of different methods [72–75]. 2π - and
3π -exchange contributions at next-to-next-to-next-to-leading
order (N3LO) have been worked out by Kaiser [76–79] and
are considerably more involved, see also [80]. While the
2π -exchange at NLO and, especially, at N2LO generates a
rather strong potential at distances of the order of the inverse
pion mass [74], the leading 3π -exchange contributions turn out
to be negligible. The N3LO contributions to the 2π -exchange
potential were also derived in the covariant formulation of
chiral EFT [81] by Higa et al [82, 83]. The LECs entering
the pion-exchange contributions up to N3LO are known from
pion–nucleon scattering and related processes [84–86]. We
note that some of them, especially the ones from L(3)

πN , are
presently not very accurately determined. In the isospin
limit, the short-range part of the potential involves 2, 9, 24
independent terms at LO, NLO/N2LO, N3LO, respectively.
The corresponding LECs were fixed from the two-nucleon
data leading to the accurate N3LO potentials of Entem and
Machleidt (EM) [87] and Epelbaum, Glöckle and Meißner
(EGM) [88]. These two potentials differ in the treatment of
relativistic corrections (including the form of the employed
dynamical equation), IB terms and the form of the regulator
functions. There are also differences in the adopted values
of certain pion–nucleon LECs. Finally, EGM provide an
estimation of the theoretical uncertainty by means of the
variation of the cutoffs in some natural ranges. This important
issue is not addressed in [87], where a single excellent
fit to neutron–proton (proton–proton) scattering data with
χ2/datum = 1.10 (χ2/datum = 1.50) in the energy range
from 0 to 290 MeV is given. We refer the reader to [87, 88] for
more details. In figure 5, we compare NN phase shifts obtained
with these models with predictions from phenomenological

5

VLO = V sNL,sL
1S0

+ V sNL,sL
3S1

+ VOPE

U(r ) = V (r , r ′) δ(r − r ′) U(r , r ′) = V (r , r ′)

r 

r 
r′ 

Local 

Nonlocal 

r 

r 
r′ 

Local 

Nonlocal 

□ Does every chiral EFT interaction give well controlled and reliable results
for heavier systems?

□ Is the convergence of higher-order terms under control?
SE, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, Lee, Rupak, PRL 117, 132501 (2016)
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Degree of locality of nuclear forces - I

V A
LO = V sNL

1S0,Q0 + V sNL
3S1,Q0 + VOPE V B

LO = V sNL,sL
1S0,Q0 + V sNL,sL

3S1,Q0 + VOPE
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Degree of locality of nuclear forces – II
We can probe the degree of locality only by many-body calculations, and we
consider an SU4-symmetric potential,

VLO = V sNL,sL
SU4 + VOPE
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Degree of locality of nuclear forces – III
Consider the following potential in the framework of pionless effective field theory to
probe the degree of locality from many-body calculations,

V/π = V C2,sNL,sL
SU4 + V C3

SU4 + VCoulomb

□ C2, sL, and C3 are tuned to get the few-body physics correct for given sNL,
□ This is repeated for sNL = 0.1 - 0.6,
□ For A ≥ 16, the binding energies are well-parameterized with the

Bethe-Weizsäcker mass formula;

B(A) = aV A−aS A2/3 +ECoulomb +(symmetry + pairing + shellcorrection+ . . .) 3
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Figure 1. The correlation plot for the calculated volume-energy con-
stant aV and surface-energy constant aS . The square, diamond and
square region denote the results fitted with Macroscopic-Microscopic
model [44], Finite Range Liquid Drop Model [43], Mean Field Mod-
els [45], respectively.

For medium mass nuclei with A ≥ 16, the binding energies
can be well parameterized with the Bethe-Weizsäcker mass
formula,

B(A) = aV A− aSA
2
3 + ECoulomb + · · · , (4)

where aV and aS are volume-energy and surface-energy con-
stants, respectively, ECoulomb is the Coulomb energy, and the
ellipsis represents the symmetry energy, pairing energy, shell
correction energy, etc. To avoid fitting complexities not ac-
curately captured in our minimal nuclear interaction, we fit
only N = Z even-even nuclei, for which the symmetry en-
ergy vanishes and the pairing energy varies smoothly. The
shell correction energy is known to be much smaller than the
macroscopic contribution in this mass region [43] and thus the
first three terms appearing in Eq. (4) dominate.

For each interaction we use the calculated binding energies
with 16 ≤ A ≤ 40 to extract the liquid drop constants aV
and aS . We observe prominent shell effects for these nuclei,
and the binding energy per nucleon fluctuates around the liq-
uid drop values with maxima at the magic numbers. In the
fitting procedure the shell effects across a whole shell are av-
eraged out, thus decreasing uncertainties for the liquid drop
constants. The aS-aV plot is shown in Fig. 1. We can see
a linear correlation between these constants. The values of
aS and aV both increase as the strength of the local part of
the interaction increases. For comparison, we also show other
values of these constants in the literature, in which the masses
throughout the whole nuclide chart are used in the fits. We
found that the interaction NL50 gives a value of aV closest to
other estimations. This value of aV still gives an estimate of
the energy per nucleon at saturation. The uncertainty in aS is
large but still matches the empirical values.

In Table I we show the binding energies and charge radii for
selected nuclei. For comparison we also list the experimental
values and the calculated Coulomb energy. While the 3H en-
ergy is exact due to the fitting procedure, all the other values
are predictions. The largest relative error in binding energy
4.5% occurs for 16O. While most of the charge radii are over-
estimated, the largest relative error is only 8.0% and occurs

Table I. The calculated binding energies and charge radii of 3H, 3He
and selected alpha-like nuclei compared with experimental values.
The Coulomb interaction is taken into account perturbatively. All
energies are in MeV and radii in fm. Experimental binding energies
are taken from Ref. [47] and radii from Ref. [48].

B Exp. Rch Exp. Cou.
3H 8.48(2) 8.48 1.90(1) 1.76 0.0
3He 7.75(2) 7.72 1.99(1) 1.97 0.73(1)
4He 28.89(1) 28.3 1.72(1) 1.68 0.80(1)
16O 121.9(1) 127.6 2.74(1) 2.70 13.9(1)
20Ne 161.6(1) 160.6 2.95(1) 3.01 20.2(1)
24Mg 193.5(2) 198.3 3.13(1) 3.06 28.0(1)
28Si 235.8(4) 236.5 3.26(1) 3.12 37.1(2)
40Ca 346.8(6) 342.1 3.42(1) 3.48 71.7(4)
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Figure 2. The calculated binding energies from 3H to 48Ca. The solid
symbols denote the lattice results and the open symbols denote the
experimental values. Different symbols and colors denote different
element. The Coulomb interaction is taken into account perturba-
tively. The experimental values are taken from Ref. [47].

for 3H. For the lattice calculations of the nuclear charge radii,
we have taken into account the charge radius of the proton.

In order to examine the global behavior, here we calcu-
late the binding energies for totally 86 even-even nuclei up to
A=48. For each isotope chain we only consider the nuclides
known to be bound in experiments. The results are shown
and compared with the data in Fig. 2. Because the interaction
has an exact SU(4) symmetry, we are free of the sign problem
and can calculate the binding energies with high precision. In
Fig. 2 all of the Monte Carlo error bars are smaller than the
size of the symbols. The remaining errors due to imaginary
time and volume extrapolations are also small but not explic-
itly shown in the plot. In Fig. 2 we see that the gross feature
of the binding energies along each isotopic chain are well re-
produced. In particular, the slopes of each isotopic curve on
the proton-rich side are close to experimental value. However,
since we are using a simple central force without any spin or
isospin dependence, the discrepancy is somewhat larger on the
neutron-rich side.

The charge density profile is another important physical

Lu, Li, SE, Lee, Epelbaum, Meißner, Phys. Lett. B, 797, 134863 (2019)
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Essential elements for nuclear binding

□ a lattice action with minimum number of parameters (four) which describes
neutron matter up to saturation density and the ground state properties of nuclei
up to calcium. a = 1.32 fm, sL = 0.0609 (l.u.), and sNL = 0.5 (l.u.)

Lu, Li, SE, Lee, Epelbaum, Meißner, Phys. Lett. B, 797, 134863 (2019)

B Experiment Rch Experiment
3H 8.48(2) 8.48 1.90(1) 1.76

3He 7.75(2) 7.72 1.99(1) 1.97
4He 28.89(1) 28.3 1.72(1) 1.68
16O 121.9(1) 127.6 2.74(1) 2.70

20Ne 161.6(1) 160.6 2.95(1) 3.01
24Mg 193.5(2) 198.3 3.13(1) 3.06
28Si 235.8(4) 236.5 3.26(1) 3.12
40Ca 346.8(6) 342.1 3.42(1) 3.48
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Essential elements for nuclear binding

□ a lattice action with minimum number of parameters (four) which describes
neutron matter up to saturation density and the ground state properties of nuclei
up to calcium. a = 1.32 fm, sL = 0.061 (l.u.), and sNL = 0.5 (l.u.)

Lu, Li, SE, Lee, Epelbaum, Meißner, Phys. Lett. B, 797, 134863 (2019)
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Figure 3. The calculated 16O and 40Ca charge densities compared
with the empirical results. The circles denote the results with-
out Coulomb interaction. The squares denote the results with the
Coulomb interaction included perturbatively. Empirical values are
taken from Ref. [49].

quantity sensitive to the nuclear interaction. In Fig. 3 we
show the charge densities of 16O and 40Ca calculated with
the pinhole algorithm. We have again taken into account the
charge distribution of the proton. To compare with data from
the electron scattering experiments we also show the results
with the Coulomb interaction included with first order pertur-
bation theory. For both nuclei, the charge densities without
Coulomb interaction show clear Gaussian shapes. The center
densities of 16O and 40Ca are approximately 0.08 e·fm−3 and
0.11 e·fm−3, respectively. The Coulomb force suppresses the
center densities and expands the nuclei, drawing the results
closer to the empirical data. Our results are surprisingly good
for such as a simple nuclear interaction.

Finally we examine the predictions for pure neutron matter
(NM). In Fig. 4 we show the calculated NM energy as a func-
tion of the neutron density compared with other calculations.
Here we use three different box size L = 5, 6, 7 with neutron
numbers varying from 14 to 66. We compare our results with
other calculations with full N3LO chiral interactions. We see
that our results are in line with the other calculations at den-
sities above 0.05 fm−3. At lower densities the discrepancy
is larger because our SU(4)-invariant interaction is not tuned
to the physical neutron-neutron scattering length, but this is
simply fixed by including SU(4)-breaking interactions. Over-
all, our results are quite good in view of the simplicity of the
interaction.

In this letter we have shown that the ground state properties
of light nuclei, medium-mass nuclei, and neutron matter can
be described using a minimal nuclear interaction with only
four interaction parameters. While the first three parameters
are already standard in χEFT, the fourth and last parameter is
a new feature that controls the strength of the local part of the
nuclear interactions. We expect that these new insights might
help design new χEFT calculations with better convergence at
higher densities. While in this analysis we are controlling the

0.00 0.05 0.10 0.15
0

5

10

15

20  EM 500 MeV
 EGM 450/500 MeV
 EGM 450/700 MeV
 GCR (2012)
 APR (1998)
 This work, L = 5
 This work, L = 6
 This work, L = 7

E/
N

 (M
eV

)

neutron density (fm-3)

Figure 4. The pure neutron matter (NM) energy as a function of neu-
tron density calculated using the NL50 interaction with box size L=5
(up triangles), L=6 (squares), L=7 (right triangles), respectively. For
comparison we also show results calculated with full N3LO chiral
interactions (EM 500 MeV, EGM 450/500 MeV and EGM 450/700
MeV) [50], the results from variational (APR) [51] and Auxiliary
Field Diffusion MC calculations (GCR) [52].

strength of the local part of the interactions primarily through
the NN interaction, we suspect that one could also control the
local part of the interactions at the 3N level only. This may ex-
plain the large differences seen in recent ab initio calculations
using different 3N forces.

Aside from the Coulomb interaction, all of the other in-
teractions in this minimal model obey Wigner’s SU(4) sym-
metry. This seems to be an example of emergent universal-
ity. The SU(4) interaction resurges at higher densities not
because the underlying fundamental interaction is invariant,
but because the SU(4) interaction is coherently enhanced in
the many-body environment. This is not to minimize the im-
portant role of spin-dependent effects such as spin-orbit cou-
plings and tensor forces. However, it does seem to suggest
that SU(4) invariance plays a key role in the bulk properties of
nuclear matter.
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a = 1.32 fm and pmax = π/a = 471 MeV

Hypernucleus Experiment N3LO (2N+3N) and LO (ΛN) N3LO (2N+3N) and LO (ΛN+ΛNN)

3
ΛH 0.16 ± 0.04 0.08 ± 0.05 0.12 ± 0.06

4
ΛH0+

2.25 ± 0.042 2.11 ± 0.18 2.258 ± 0.19
4
ΛH1+

1.01 ± 0.046 1.23 ± 0.18 1.012 ± 0.19

5
ΛHe 3.102 ± 0.03 3.51 ± 0.12 3.10 ± 0.13

7
ΛLi

1
2
+

5.62 ± 0.06 5.68 ± 0.96 5.52 ± 0.97
7
ΛLi

3
2
+

4.93 ± 0.06 5.53 ± 0.96 5.36 ± 0.97

9
ΛBe 6.61 ± 0.07 7.34 ± 0.55 6.72 ± 0.55

13
ΛC 11.96 ± 0.07 12.60 ± 0.84 11.44 ± 0.84

16
ΛO 13.00 ± 0.06 18.29 ± 1.59 12.72 ± 1.61
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