

High-quality nuclear forces from chiral EFT

Patrick Reinert Ruhr-Universität Bochum

Dr. Klaus Erkelenz Kolloquium December 17, 2019

- Proper description of the strong force is a long-standing problem
- Formulate nuclear quantum-mechanical many-body problem with nucleons as degrees of freedom
- Computational advances in ab initio methods
 - Precise forces required
- Need for consistent many-body forces and currents

A short history of NN potentials

- 1935: One-Pion-Exchange (Yukawa)
- 1960ies: Phenomenological potentials & One-Boson-Exchange (OBE)
- 1970ies: Bonn Potential (Erkelenz)
- 1990ies: Nijmegen PWA & semi-phenomenological potentials achive $\chi^2/datum \sim 1$ description, Chiral EFT as QCD-inspired approach

Erkelenz' work in the light of today

Driven by the same goals as today:

- Rejection of phenomenological models
 - too many parameters
 - Performance beyond the two-nucleon system
 - Derivation of potential from field theory

Chiral nuclear EFT

• Degrees of freedom: Nucleons & Pions

Chiral nuclear EFT

• Degrees of freedom: Nucleons & Pions

Nuclear forces require non-perturbative resummation

• Iterations UV-divergent →apply regulator

Expansion in Q
Systematic improvement
Uncertainty estimation

Hierarchy of nuclear forces

Figure courtesy of E. Epelbaum

Parameters in chiral nuclear EFT

Consistent derivation of many-body forces & currents from same Lagrangian:

Long-range part of nuclear forces due to pion exchanges:

- πN LECs from recent Roy-Steiner eq. analysis of πN scattering [Phys. Rev. Lett. 115, 192301] (Dr. Klaus Erkelenz Preis 2015)
- Parameter-free for nuclear forces

Current generation of chiral NN potentials

New generation of N⁴LO forces

- Semilocal coordinate-space regularized (EKM) [EPJA 51 (2015) 53; PRL 115 (2015) 122301]
- Semilocal momentum-space regularized (SMS), this work
- Nonlocal momentum-space regularized (EMN) [PRC 96 (2017) 024004]

Also:

• Interactions fitted to properties of heavier nuclei (e.g. NNLOsat [PRC 91 (2015) 051301]), Delta-full,...

Important differences in regularization & fitting protocol!

"Semilocal momentum-space regularized (SMS) NN forces"

+

$$\langle p'|V_{\rm cont}|p\rangle_{\rm reg.} = \langle p'|V_{\rm cont}|p\rangle \exp\left[-\frac{p'^2 + p^2}{\Lambda^2}\right]$$

New **local** regularization for long-range potential *in momentum space*

Regularization of long-range part

EKM potential used local regularization in coordinate space:

$$V_{\pi, \text{reg}}(\vec{r}) = V_{\pi}(\vec{r}) \left[1 - e^{-\frac{r^2}{R^2}}\right]^n$$

Minimization of long-range cutoff artifacts
 inconvenient for currents & N³LO 3NF

New local regularization in momentum space (inspired by Annals Phys. 208, 253):

Main idea: regularize static pion-propagators $\frac{1}{\vec{l}^2 + M_\pi^2} \rightarrow \frac{1}{\vec{l}^2 + M_\pi^2} e^{-\frac{\vec{l}^2 + M_\pi^2}{\Lambda^2}}$ with gaussian form factor

e.g.
$$V_{1\pi,\text{reg.}}(q) \propto \frac{1}{q^2 + M_{\pi}^2} e^{-\frac{q^2 + M_{\pi}^2}{\Lambda^2}} = \frac{1}{q^2 + M_{\pi}^2} + \text{short-range terms}$$

• Polynomial short-range contribution chosen such that $V(r)|_{r=0} = 0$ and $\left.\frac{d^n V}{dr^n}(r)\right|_{r=0} = 0$

✓ similar to previous coordinate-space regulator

✓ scheme extendable to many-body forces & currents

χ^2 /datum (Λ =450 MeV)

$E_{\rm lab}$ bin	LO	NLO	$N^{2}LO$	N ³ LO	N^4LO	N^4LO^+			
neutron-proton scattering data									
0–100	73	2.2	1.2	1.07	1.07	1.07			
0 - 200	62	5.4	1.7	1.09	1.08	1.06			
0–300	75	14	4.2	2.01	1.16	1.06			
proton-proton scattering data									
0 - 100	2290	10	2.2	0.90	0.88	0.86			
0 - 200	1770	90	37	1.99	1.42	0.95			
0 - 300	1380	90	41	3.43	1.67	1.00			

χ^2 /datum (Λ =450 MeV)

$E_{\rm lab}$ bin	LO	NLO	$N^{2}LO$	N ³ LO	N^4LO	N^4LO^+
neutron-	-proton sca	ttering data	,			
0-100	73	2.2	1.2	1.07	1.07	1.07
0 - 200	62	5.4	1.7	1.09	1.08	1.06
0–300	75	14	4.2	2.01	1.16	1.06
proton-proton scattering data						
0-100	2290	10	2.2	0.90	0.88	0.86
0-200	1770	90	37	1.99	1.42	0.95
0-300	1380	90	41	3.43	1.67	1.00
	2 + 1 IB LECs	+7 LECs	No new LECs	+12 LECs	+1 IB LEC	+4 LECs

• (Almost) parameter-free improvements show importance of chiral 2π -exchange

χ^2 /datum (Λ =450 MeV)

$E_{\rm lab}$ bin	LO	NLO	$N^{2}LO$	N ³ LO	N^4LO	N^4LO^+		
neutron-proton scattering data								
0-100	73	2.2	1.2	1.07	1.07	1.07		
0 - 200	62	5.4	1.7	1.09	1.08	1.06		
0–300	75	14	4.2	2.01	1.16	1.06		
proton-proton scattering data								
0 - 100	2290	10	2.2	0.90	0.88	0.86		
0 - 200	1770	90	37	1.99	1.42	0.95		
0–300	1380	90	41	3.43	1.67	1.00		
	2 + 1 IB +7 LECs +12 LECs					+4 LECs		
	LECS							

N⁴LO⁺ = N⁴LO + leading F-Wave contacts: $\langle {}^{S}F_{j}, p'|V_{cont}|{}^{S}F_{j}, p\rangle = E_{i_{F}}p^{3}p'^{3}$

CO(67)

- Need accurate F-Waves (in particular ³F₂) at energies ~ 150 MeV to describe such observables well
- Estimated truncation error and naturalness of F-Wave LECs suggest no failure of power counting

Phaseshifts N⁴LO⁺ (Λ = 450 MeV)

χ^2 /datum Cutoff Dependence

Best precision for Λ = 450 MeV in 2N system

Quantile-Quantile plot

Check assumption:
$$r_i = \frac{O_i^{\mathrm{exp}} - O_i^{\mathrm{th}}}{\Delta O_i^{\mathrm{exp}}} \sim \mathcal{N}(0, 1)$$

• Plot
$$F_{emp}^{-1}(x)$$
 VS $F_{th}^{-1}(x)$ 2
 $F_{emp}(x) = \frac{1}{N} \sum_{i=1}^{N} \theta(x - r_i)$ 2
 $F_{th}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} dt e^{-t^2/2} \, \operatorname{cf}_{0}^{\text{f}}$ 1

• Tail-sensitive error bands for Q-Q plot Am. Stat. Phys. 67, 249

χ^2 Comparison with other potentials

$E_{\rm lab}$ bin	CD Bonn	Nijm I	Nijm II	Reid93	Idaho N^3LO^*	$EMN N^4LO^{+*}$	$SMS N^4LO^{+\dagger}$		
neutron-proton scattering data									
0 - 100	1.07	1.06	1.07	1.08	1.17	1.11	1.07		
0 - 200	1.08	1.07	1.07	1.09	1.17	1.17	1.06		
0 - 300	1.08	1.08	1.08	1.10	1.24	1.25	1.06		
proton-proton scattering data									
0 - 100	0.89	0.87	0.88	0.85	1.01	1.01	0.86		
0 - 200	0.98	0.98	1.00	0.99	1.32	1.16	0.95		
0–300	1.01	1.03	1.05	1.04	1.39	1.21	1.00		
No. of Paramete	43 rs	41	47	50	28+x	29+x	27+1		

 $^{*}\Lambda = 500 \text{ MeV}$, $^{\dagger}\Lambda = 450 \text{ MeV}$

SMS N⁴LO⁺ achieves same precision as high-precision phenomenological potentials with notably less parameters

Redundant Contact Interactions at Q⁴

$$\langle {}^{1}S_{0}, p'|V_{\text{cont}}|{}^{1}S_{0}, p\rangle = \tilde{C}_{1S0} + C_{1S0}(p^{2} + p'^{2}) + D_{1S0}p^{2}p'^{2} + D_{1S0}^{\text{off}}(p'^{2} - p^{2})^{2} \langle {}^{3}S_{1}, p'|V_{\text{cont}}|{}^{3}S_{1}, p\rangle = \tilde{C}_{3S1} + C_{3S1}(p^{2} + p'^{2}) + D_{3S1}p^{2}p'^{2} + D_{3S1}^{\text{off}}(p'^{2} - p^{2})^{2} \langle {}^{3}S_{1}, p'|V_{\text{cont}}|{}^{3}D_{1}, p\rangle = C_{\epsilon 1}p^{2} + D_{\epsilon 1}p^{2}p'^{2} + D_{\epsilon 1}^{\text{off}}p^{2}(p'^{2} - p^{2})$$

Can be changed by unitary transformation

→ affects only values of other contact LECs modulo higher order terms

Redundant Contact Interactions at Q⁴

 $D_{1S0}^{\text{off}} = D_{3S1}^{\text{off}} = D_{\epsilon 1}^{\text{off}} = 0$ **Choice:** $[GeV^{-2}]$ [GeV⁻²] 1000 1000 ¹S₀ EKM ¹S₀ SMS 4 800 800 - 2 - 2 600 600 p' [MeV] - 0 • 0 400 400 -2 - -2 200 200 0 -0 0 200 400 600 800 1000 0 200 400 600 800 1000 p [MeV] p [MeV]

- Impact on 2N observables negligible
- Leads to softer, more perturbative interactions (confirmed in Weinberg eigenvalue analysis)
- Fast convergence of fits, stable LECs

Triton binding energy

Faddeev equation without 3NF:

- Unitary transformation also induces short-range 3NF
- Smaller 3NF strength to compensate Triton underbinding with new choice
- <u>Caution:</u> 3NF contributions are generally not smaller than before

Uncertainty Estimation

- Statistical errors of NN LECs based on covariance matrix of the fit and second-order Taylor expansion of observables [Phys. Rev. X 6.011019]
- Recently switched to Bayesian model for estimation of truncation errors [Phys. Rev. C 92.024005, Phys. Rev. C 96.024003]
- For Energy Range Errors, compare observables from fits up to E_{lab} = 220, 260 & 300 MeV
- Finally, propagate statistical uncertainty of Roy-Steiner πN LECs \rightarrow usually smallest error

Uncertainty Estimation

Isospin-breaking (IB) 2N force

- SMS potential achieves $\chi^2/\,datum$ ~ 1
- But isospin-breaking (IB) limited to pion-mass splitting in One-pionexchange and charge-dependent short-range interactions in ¹S₀
- Chiral EFT allows systematic incorporation of IB effects:

• Count IB contributions in terms of chiral expansion parameter [Epelbaum & Meißner '04]

Charge-dependent πNN couplings

General OPE without isospin limit:

 $V_{1\pi}(pp) = f_p^2 V_{\pi}(M_{\pi^0})$ $V_{1\pi}(np) = -f_0^2 V_{\pi}(M_{\pi^0}) + (-1)^{t+1} 2f_c^2 V(M_{\pi^{\pm}})$ $V_{1\pi}(nn) = f_n^2 V_{\pi}(M_{\pi^0})$

with
$$V_{\pi}(M_i) = -\frac{4\pi}{M_{\pi^{\pm}}^2} \frac{\vec{\sigma}_1 \cdot \vec{q} \ \vec{\sigma}_2 \cdot \vec{q}}{\vec{q}^2 + M_i^2}$$
, $f_0^2 = f_p f_n$

Long-standing question regarding charge-dependence of the πNN coupling constant!

Charge-dependent πNN couplings

General OPE without isospin limit:

Determine *f*_i's from NN data

- Combined fit of np- and pp- scattering data from self-consistent 2013 Granada database for $E_{lab} = 0 280$ MeV
- Integrate ("marginalize") over Λ and short-range LECs:

$$p(\{f_i^2\}|D) = \int d\Lambda \, dC \, \frac{p(D|\{f_i^2\}, \{C_i\}, \Lambda) \, p(\{f_i^2\}, \{C_i\}, \Lambda)}{p(D)}$$

Results for πNN couplings (preliminary)

Nijmegen [Phys Rev Lett 82, 4992 (1999),

Phys Rev C 44, R1258 (1991),

Phys Rev C 47, 512 (1993)]

Granada '17 [Phys Rev C 95, 064001]

this work

Results for πNN couplings (preliminary)

- $p(\{f_i^2\}|D)$ is gaussian to a high degree of approximation
- Integrand over cutoff is strongly peaked at Λ = 453 MeV

 $(\Lambda = 450 \text{ MeV})$

 Implicit dependence on data selection by Granada group

np-pp phaseshift difference (lower partial waves)

preliminary

np-pp phaseshift difference (higher partial waves)

preliminary

Summary

The N4LO+ SMS potential is currently the most precise interaction from chiral EFT, rivaling high-quality semi-phenomenological potentials

- Local regularization in momentum space preserves long-range 2 behavior of the interactions and paves the way for consistent regularization of higher-order 3NF & currents
- Softer forces due to removal of redundant off-shell contributions to 3 the Q⁴ contact potential
- /л
- Complete treatment of isospin-breaking effects up to N⁴LO

Extraction of charge-dependent πNN couplings using Bayesian methods

Database

Use self-consistent 2013 Granada database [Phys. Rev. C 88.064002]

- Includes scattering data from 50ies up to 2013
- uses "3σ-criterion" to reject non-normaldistributed data
- rejection rate 0-300 MeV: np: 31%, pp: 11%

Comparison between theory and experiment via standard χ^2 approach:

$$\chi_j^2 = \sum_{i=1}^{n_j} \left(\frac{O_i^{\text{exp}} - ZO_i^{\text{theo}}}{\delta O_i} \right)^2 + \left(\frac{Z - 1}{\delta_{\text{sys}}} \right)^2$$

• Z (inverse relative norm) is chosen to minimze χ^2_{j}

F-Wave sensitivity of pp data

• Higher accuracy also improves extraction of other LECs

Repulsive WE

 $\lim_{\epsilon \to 0} \overline{G_0(E+i\epsilon)} V |\psi_i(E)\rangle = \eta_i(E) |\psi_i(E)\rangle$

