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Motivation

n

p

● Proper description of the strong force is a long-standing 
problem

● Formulate nuclear quantum-mechanical many-body 
problem with nucleons as degrees of freedom

● Computational advances in ab initio methods
● Precise forces required

● Need for consistent many-body forces and currents
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A short history of NN potentials

Chiral EFT

Meson-Exchange models (OBE, ...)

Phenomenological models

Semi-phen. models

~ early 90ies

● 1935:       One-Pion-Exchange (Yukawa)
● 1960ies:  Phenomenological potentials & One-Boson-Exchange (OBE)
● 1970ies:  Bonn Potential (Erkelenz)
● 1990ies:  Nijmegen PWA & semi-phenomenological potentials achive           

               χ2/datum ~ 1 description, Chiral EFT as QCD-inspired approach
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Erkelenz‘ work in the light of today

Chiral EFT 

Driven by the same goals as today:

● Rejection of phenomenological models
● too many parameters
● Performance beyond the two-nucleon 

system

● Derivation of potential from field 
theory 

OBE model

Then: Now:
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Chiral nuclear EFT
● Degrees of freedom: Nucleons & Pions

Construct most general Langrangians:

πN amplitude NN potential

QCDsymmetries

derive perturbatively, e.g.

arrange in 
powers of Q

(power 
counting)
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Chiral nuclear EFT
● Degrees of freedom: Nucleons & Pions

Construct most general Langrangians:

πN amplitude NN potential

● Systematic improvement
● Uncertainty estimation

Expansion in Q

QCDsymmetries

derive perturbatively, e.g.

arrange in 
powers of Q

(power 
counting)

Nuclear forces require non-perturbative 
resummation

● Iterations UV-divergent →apply regulator
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Hierarchy of nuclear forces

Figure courtesy of E. Epelbaum
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Parameters in chiral nuclear EFT

● πN LECs from recent Roy-Steiner eq. analysis of πN scattering [Phys. 
Rev. Lett. 115, 192301] (Dr. Klaus Erkelenz Preis 2015)

● Parameter-free for nuclear forces

Consistent derivation of many-body forces & currents from same Lagrangian:

Long-range part of nuclear forces due to pion exchanges:

Short-range part of 2NF due to contact interactions
● NN LECs determined from NN scattering data, 

Bd=2.224575(9) MeV and bnp=-3.7405(9) fm

● Use self-consistent 2013 Granada database [Phys. Rev. C 
88.064002]
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Current generation of chiral NN potentials

Important differences in regularization & fitting protocol!

● Semilocal coordinate-space regularized (EKM) [EPJA 51 (2015) 53; PRL 115 (2015) 122301]

● Semilocal momentum-space regularized (SMS), this work
● Nonlocal momentum-space regularized (EMN) [PRC 96 (2017) 024004]

1990 2000 2010 201520051995

LO
NLO/
N2LO N3LO N4LO

New generation of N4LO forces

Also:

● Interactions fitted to properties of heavier nuclei (e.g. NNLOsat [PRC 91 (2015) 

051301]), Delta-full,…
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Regularization of SMS forces

New local regularization for 
long-range potential in 
momentum space

“Semilocal momentum-space regularized (SMS) NN forces“

Non-local regulator for 
short-range contacts (same 
as EKM)

+
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Regularization of long-range part

● Polynomial short-range contribution chosen such that                   

 and

 similar to previous coordinate-space regulator
 scheme extendable to many-body forces & currents

EKM potential used local regularization in coordinate space:

 Minimization of long-range cutoff artifacts
  inconvenient for currents & N3LO 3NF 

New local regularization in momentum space (inspired by Annals Phys. 208, 253):

Main idea: regularize static pion-propagators 
with gaussian form factor

e.g.
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χ2/datum (Λ=450 MeV)
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χ2/datum (Λ=450 MeV)

● (Almost) parameter-free improvements show importance of chiral 
2π-exchange

No new 
LECs

+1 IB 
LEC

2 + 1 IB 
LECs

+7 LECs +12 LECs +4 LECs
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χ2/datum (Λ=450 MeV)

2 + 1 IB 
LECs

+7 LECs +12 LECs
+4 LECs

N4LO
N4LO+

NPWA

N4LO+ = N4LO + leading F-Wave contacts:
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CO(67)

● differential cross 

section dσ/dΩ 

● Elab = 144.1 MeV 

● experimental errors  0.5% ∼

About this dataset: 

● Need accurate F-Waves (in particular 3F2) at energies  150 MeV to ∼

describe such observables well

● Estimated truncation error and naturalness of F-Wave LECs suggest 
no failure of power counting
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Phaseshifts N4LO+  (Λ = 450 MeV) 
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χ2/datum Cutoff Dependence

Best precision for Λ = 450 MeV in 2N system 

SMS N4LO+ 
EMN N4LO+ 

Cutoff Λ
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Quantile-Quantile plot

● Tail-sensitive error bands for 
Q-Q plot Am. Stat. Phys. 67, 249

Check assumption: 

● Plot              vs 

High quality of fit 
confirmed at N4LO+ 
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χ2 Comparison with other potentials

No. of 
Parameters

43              41             47             50               28+x                     29+x                      27+1 

SMS N4LO+ achieves same precision as high-precision 
phenomenological potentials with notably less parameters
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Redundant Contact Interactions at Q4

Peculiar convergence 
behavior of fits:

Iterations 

1 2

Look at S-wave contact potentials:

                       Can be changed by unitary transformation

→ affects only values of other contact LECs modulo higher order terms

→Strong correlations?

pure off-shell 
contributions
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Redundant Contact Interactions at Q4

Choice:

● Impact on 2N observables negligible
● Leads to softer, more perturbative interactions (confirmed in Weinberg 

eigenvalue analysis)
● Fast convergence of fits, stable LECs

1S0 EKM 1S0 SMS

[GeV-2][GeV-2]
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Triton binding energy

Faddeev equation without 3NF:

● Unitary transformation also induces short-range 3NF
● Smaller 3NF strength to compensate Triton underbinding with new choice
● Caution: 3NF contributions are generally not smaller than before

EKM (redundant contacts)
SMS (without 
redundant contacts)
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Uncertainty Estimation

Truncation Error

Statistical Error NN LECs

Statistical Error πN LECs

Energy Range in Fits

● Statistical errors of NN LECs based on covariance matrix of the fit and 
second-order Taylor expansion of observables [Phys. Rev. X 6.011019]

● Recently switched to Bayesian model for estimation of truncation errors 
[Phys. Rev. C 92.024005, Phys. Rev. C 96.024003]

● For Energy Range Errors, compare observables from fits up to Elab = 220, 
260 & 300 MeV

● Finally, propagate statistical uncertainty of Roy-Steiner πN LECs               
→ usually smallest error
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Uncertainty Estimation

Truncation Error

Statistical Error NN LECs

Statistical Error πN LECs

Energy Range in Fits

np total cross section:
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Isospin-breaking (IB) 2N force

● Count IB contributions in terms of chiral expansion parameter 
[Epelbaum & Meißner ‘04]

● SMS potential achieves χ2/datum ~ 1

● But isospin-breaking (IB) limited to pion-mass splitting in One-pion-
exchange and charge-dependent short-range interactions in 1S0

● Chiral EFT allows systematic incorporation of IB effects:

Standard ModelStandard 
Model:

● strong IB due to
● electromagnetic IB due to

ChEFT: String of IB interaction vertices between nucleons

 and pions                           and  
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Overview of isospin-breaking contributions

...... ...

N4LO

N3LO

N2LO

NLO
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Overview of isospin-breaking contributions

...... ...

N4LO

N3LO

N2LO

NLO
already considered in 
published SMS potential
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Overview of isospin-breaking contributions

...... ...

N4LO

N3LO

N2LO

NLO

parameter-free

TPEP            ,          and    

[Gasser, Leutwyler ‘82]

πγ-exchange 
[van Kolck ‘98]  
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Overview of isospin-breaking contributions

...... ...

N4LO

N3LO

N2LO

NLO

additional unknown 
parameters

charge-dependent short-range 
interactions in P-waves
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Charge-dependent πNN couplings

General OPE without isospin limit:

with                                                ,

Long-standing question regarding charge-dependence of the πNN 
coupling constant!  
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Charge-dependent πNN couplings

General OPE without isospin limit:

● Combined fit of np- and pp- scattering data from self-consistent 2013 
Granada database for Elab = 0 – 280 MeV 

● Integrate („marginalize“) over     and short-range LECs:

+ IB two-pion exchange 

Determine    ‘s from NN data
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Results for πNN couplings (preliminary)

this work

Granada ‘17 [Phys Rev C 95, 064001]

Nijmegen
 [Phys Rev Lett 82, 4992 (1999),

 Phys Rev C 44, R1258 (1991),

 Phys Rev C 47, 512 (1993)]
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Results for πNN couplings (preliminary)

x 105

χ2/datum
Elab = 0-280 MeV: 1.022 1.015

Without additional IB 
effects

With additional IB 
effects

What is the impact on 2N data (total IB)?

+ 6 parameters

●                  is gaussian to a high 
degree of approximation

● Integrand over cutoff is strongly 
peaked at Λ = 453 MeV 

● Implicit dependence on data 
selection by Granada group 
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np-pp phaseshift difference (lower partial waves)

preliminary
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np-pp phaseshift difference (higher partial waves)

preliminary
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Summary

Local regularization in momentum space preserves long-range 
behavior of the interactions and paves the way for consistent 
regularization of higher-order 3NF & currents

Softer forces due to removal of redundant off-shell contributions to 
the Q4 contact potential

The N4LO+ SMS potential is currently the most precise interaction from 
chiral EFT, rivaling high-quality semi-phenomenological potentials1

3

2

4 Complete treatment of isospin-breaking effects up to N4LO

5 Extraction of charge-dependent πNN couplings using Bayesian methods
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Database

● Includes scattering data from 50ies up to 
2013

● uses ”3σ-criterion” to reject non-normal-
distributed data

● rejection rate 0-300 MeV: np: 31%, pp: 11%
np

pp

Use self-consistent 2013 Granada database 
[Phys. Rev. C 88.064002]

Comparison between theory and 

experiment via standard χ2 approach:

● Z (inverse relative norm) is chosen to 
minimze χ2

j



38

F-Wave sensitivity of pp data

● Higher accuracy also improves extraction of other LECs
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Repulsive WE

EKM

SMS
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