
Project 9a: XY-Model

Computational Physics (physics760)

Project Report

Daniel Weller

HISKP, University of Bonn

Bonn, March 2011

Abstract

This document summarizes my work regarding the implementation of the xy-Model
using cuda. First, a short overview of the project is given. Then theoretical as well
as technical aspects will be discussed. The report closes after presenting measured
properties of the model with an analysis on the shift of the critical temperature due to
finite size effects with a lineup of calculation times on different hardware.

3

Contents

1 Introduction 5

2 Theoretical and Technical Aspects 5

2.1 XY-Model and Monte Carlo: Metropolis Algorithm 5

2.2 Kosterlitz-Thouless Transition . 6

2.3 CUDA . 6

2.4 Parallel Random Number Generation . 7

2.4.1 Generation with CPU . 8

2.4.2 Generation with GPU . 8

3 Discussion of Measured Observables 9

3.1 Energy per Spin . 9

3.2 Magnetization . 11

3.3 Specific Heat . 11

3.4 Magnetic Susceptibility . 12

3.5 Helicity Modulus . 12

4 Dealing with Finite Size Effects 13

5 Conclusion 14

4

1 Introduction

In the following, the properties of the xy-model descending from a simulation with the
Metropolis algorithm will be discussed. The xy-model in this context is treated as a two-
dimensional lattice described by the Hamiltonian

H (s) = −
∑

〈i,j〉

si · sj = −
∑

〈i,j〉

cos (φi − φj) , (1.1)

where 〈i, j〉 denotes all next neighbouring pairs of spins si. The state of each two-dimensional
spin is given by its angle φi ∈ {0..2π}, the state of the complete lattice is given by s =
(s1, s2, . . . , sN).

The aim of the simulation is to measure the temperature and size dependence of different
observable parameters of the model. Also the occuring phase transition shall be demon-
strated. The so-called Kosterlitz-Thouless-transition yields a critical temperature Tc, its
value can be extracted within this project.

My motivation to implement the algorithm with cuda is based on my employment at
Institut für Numerische Simulation, University of Bonn, which is listed as one of the first
“cuda Research Centers” in Germany in [2]. The xy-model seems to be a decent start into
the subject of parallelization.

2 Theoretical and Technical Aspects

2.1 XY-Model and Monte Carlo: Metropolis Algorithm

In addition to the Hamiltonian given in equation 1.1, the partition function of the xy-model
is given by

Z =

∫

ds exp (−H/(kBT)) . (2.1)

Fig. 2.1: Checker board:
all white (black) fields are
updated at once.

According to the Metropolis algorithm, a sequence of random
samples resp. observables at a given temperature1 T is generated.
Prior to measurement, the system has to reach thermal equilib-
rium. Hence, a certain quantity of monte-carlo-steps is necessary
before the start of recording. From each recorded sample, the
mean value and its statistical error is obtained.

To execute lattice updates in a preferably parallel fashion, a
checker-board-like segmentation of the spins as denoted in figure
2.1 seems promising. Since the Hamiltonian only depends on
nearest neighbour interaction, the energy difference ∆h as well

1in the following, kB will be considered as equal to 1

5

has the same dependence. The slightly modified procedure looks
as follows:

1. Start with initial configuration s (random or defined values)

2. Perform local update of each spin on “white” lattice site
simultaneously:

(a) uniformly generate new state, i.e. randomly choose angle from {0..2π}

(b) accept update with probability p = min (1, exp (−∆h/T))

3. Repeat step 2 for all “black” sites

4. if applicable, take measurement

5. continue from step 2.

To simplify things, only squared arrangements with side length L were considered. The
implementation with cuda gives further limitations, which will be mentioned in Section 2.3.

2.2 Kosterlitz-Thouless Transition

In contrast to the previous work of several other authors2, Kosterlitz and Thouless 1973
showed that the spin model treated in this project indeed posesses a phase transition [1].
However, the transition is not “of the usual type”. Kosterlitz and Thouless argue that below
some critical temperature Tc, so called vortices occure in metastable states. Above Tc, the
vortices become free. The phase transition is then given by a “sudden change in the response
to an applied magnetiv field.”3

Vortices describe topological formations of multiple spins. They are parted into a clock-

wise and counterclockwise group, whereas occurrence is only pairwise. Different configura-
tions contain spins aligned circle-wise or diametric around a center point. Also a somehow
“repelling” appearence is possible. Nevertheless, in terms of this project, only indirect im-
plications of the Kosterlitz-Thouless-transition will be observed. Employing measurements
on the magnetic susceptibility and other observables (see sec. 3), the critical temperature
will be determined.

2.3 CUDA

The Compute Unified Device Architecture (acronym: cuda) is a technique developed by
Nvidia. It allows for comparatively straightforward implementation of parallel algorithm

2Mermin and Wagner 1966, Wegner 1967. Berezinskii 1970, as mentioned in [1]
3 [1], p. 1190

6

to be run on graphics devices. The advantage of this technique is based on the nature of
graphics cards: the typical purpose is to perform a huge amount of rather simple calculations
in parallel, for instance to build up each pixel of an image. With steady progression, the
capability of the devices rises. More complex arithmetical instructions became feasible, and
with it, computations for scientific tasks can benefit from the speedup through parallelization
with cuda [3].

One common task is to determine the average value of an array of numbers. The idea is
to reduce the amount of data by a factor (commonly 256), and finish the calculation on the
CPU. Implementation with cuda may look like this:

Listing 1: value reduction

1 g l o b a l void

2 getAverage (r e a l ∗ f i e l d , r e a l ∗ r e s u l t) {
3 s h a r e d r e a l avg [blockDim . x] ;
4 avg [threadIdx . x] =
5 f i e l d [blockDim . x∗blockIdx . x + threadIdx . x] ;
6

7 for (u int s t r i d e = blockDim . x /2 ; s t r i d e > 1 ; s t r i d e /=2)
8 {
9 sync th r ead s () ;

10 i f (threadIdx . x < s t r i d e) {
11 avg [threadIdx . x] =
12 (avg [threadIdx . x]+avg [threadIdx . x+s t r i d e]) / 2 . 0 ;
13 }
14 }
15 sync th r ead s () ;
16

17 i f (threadIdx . x == 0) r e s u l t [b lockIdx . x] = avg [0] ;
18 }

The so-called kernel is executed via getAverage<<<blocks,threads>>>(input,output);,
which stems from the organisation of threads in cuda. As included in the example code, the
kernel operates on a grid, subdivided into blocks. Each block consists of several threads,
and each thread performs the same procedure defined by the kernel. To distinguish between
different threads and blocks, coordinates are attached to every element.

2.4 Parallel Random Number Generation

When simulating the xy-model in parallel, one has to consider the availability of random
numbers4. Each iteration requires 2 · L2 independent random values in the graphics device,

4in terms of this report: random numbers actually means pseudo random numbers.

7

which cannot be drawn simply from common functions like random(). Different approaches
will be discussed in this section.

2.4.1 Generation with CPU

The naive or simple approach to feed random numbers to the algorithm is to create the
required data on the host CPU and copy it to the device memory. The kernel executing
spin updates then pulls the appropriate value from memory. Creation and update alternate
throughout the simulation. The quality of the random numbers depends on the generator.
Well established methods (gsl rng with various generators, e.g. mt19937 [5]) exist. However,
the performance upgrade gained by parallelization suffers from the massive overhead of
transferring memory from host to device.

2.4.2 Generation with GPU

To avoid memory transfer, random numbers should be produced on the device. Again, an
alternating pattern can be implemented, but also a device function to pickup a number on
the fly is possible. The following paragraphs give a short outline about different approaches.

curand Curand is a library that “provides facilities that focus on the simple and efficient
generation of high-quality pseudorandom numbers” [6]. The library available only in the
newest version of the cuda toolkit – 3.2 – contains a host API as well as a device API.
The first instance can be used for the alternating fashion, the second is useful for a call
within each thread. According to [6], the rng used for a uniform distribution has a period
“greater than 2190” [6], which is sufficiently large for lattices of reasonable sizes. As of first
tests with curand, the documentation was unclear about the period of the generator. The
document stated a period of “2192−231”, whereas the papers cited in the document describe
the algorithm to have a period of “232 up to 2192”, depending on the configuration. Also,
the cluster of the HISKP does not have the according version of cuda installed at this time.
Hence, further progress was done without the curand library.

ranlux There exist at least some implementations for parallel random number generation.
One example I have examined is an implementation of the ranlux algorithm. Although the
code found in [13] provides seemingly random numbers (not tested), the implementation
itself seems to fail in stability: Somehow, only a first fraction of the array got filled, the
rest kept its value (mostly 0). Even intensive study did not help to clarify this sporadic
misbehaviour 5.

5Most likely, i failed using the code correctly.

8

Mersenne Twister The developers from Nvidia provide a sample package to the cuda
toolkit. Amongst examples for the proper use of curand, a parallel implementation of the
Mersenne Twister [14] is included. With small adjustments, the code from the SDK has
been taken to satisfy the need for random numbers.

The discussed implementation uses 4096 parallel instances of the MersenneTwister algo-
rithm. Each twister is initialized with the same configuration parameters, and subsequently
seeded with the same integer value. Thus, for small amounts of numbers, each instance gives
highly correlated values. To overcome this property, the code was changed to provide each
instance with an initial seed via random().6 Hence, for small numbers, the returned values
are distributed by random(), for larger amounts, the independent instances of the twister
provide “good randomness”.

3 Discussion of Measured Observables

To characterize the temperature dependent behaviour of the xy-model, the observables de-
scribed in the following sections have been measured. Each measurement was taken after an
appropriate count of monte carlo steps to reach thermal equilibrium. The number of data-
points has been chosen depending on the size of the lattice. Since the mentioned occurence
of vortices at higher temperatures, the system can fall into semi-stable states when lower-
ing the temperature. Therefore the measurement was taken once with “hot” initial values
(random angles) starting with high temperature, and once with a “cold start” (all angles
have the same value) starting at low temperature. The system was then given time to reach
thermal equilibrium, and subsequently measured over several steps. Then, the temperature
was adjusted and after reaching balance, the next measurement was taken.

3.1 Energy per Spin

The total energy of spins is given by eq. 1.1. For low temperature, the energy divided by the
number of lattice sites reaches its minimum at −2, as shown in fig. 3.1. Its slope changes at
about the critical temperature from linearly rising to asymptotically aproaching zero. For
all lattice sizes measured, the energy dependence was the same.

9

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

 0 0.5 1 1.5 2 2.5

E
ne

rg
y

pe
r

S
pi

n

Temperature T

L=32,64

Fig. 3.1: Temperature dependence of the energy per spin.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5

M
ag

ne
tiz

at
io

n
pe

r
S

pi
n

Temperature T

L = 32
L = 64

Fig. 3.2: Norm of magnetization per spin.

10

3.2 Magnetization

The magnetization per Spin (cf. fig. 3.2) – or to be more precise: the absolute value of the
total magnetization – is given by

|M |2 =

(

∑

i

cosφi

)2

+

(

∑

i

sin φi

)2

. (3.1)

The magnetization starts at about 1. With rising temperature, the alignment of spins breaks
up. Depending on the size of the lattice, the slope of the curve varies: the bigger L, the
steeper the drop at the critical temperature. The minimum distance to the zero-axis gets
smaller for bigger side lengths.

3.3 Specific Heat

By using the variance of the energy, one obtains the specific heat by evaluation of the
following expression:

CV =
1

T 2

(

〈E2〉 − 〈E〉2
)

(3.2)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 0.5 1 1.5 2 2.5

S
pe

ci
fic

 h
ea

t C
v

Temperature T

L = 8
L= 16

L = 32
L = 64
L = 128
L = 256
L = 512

Fig. 3.3: Logarithmic plot of the specific heat for different lattice sizes.

This observable is very sensitive to the lattice size. As shown in fig. 3.3, the temperature
at which the maximum of the curve is settled varies. This is because of finite size effects:

6After each call of the appropriate kernel, the twisters have to be reseeded, otherwise an identical stream
of random numbers will be returned.

11

The critical temperature is shifted, depending on L. Finite size effects will be discussed in
section 4.

3.4 Magnetic Susceptibility

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 0.5 1 1.5 2 2.5

M
ag

ne
tic

 s
us

ce
pt

ib
ili

ty
 X

Temperature T

L = 8
L= 16
L = 32
L = 64

L = 128
L = 256
L = 512

Fig. 3.4: Magnetic susceptibility.

Alike, the magnetic susceptibility is calculated, and the results are plotted in fig. 3.4:

χ =
1

T

(

〈M2〉 − 〈M〉2
)

. (3.3)

The location of the maximum again depends on the finite size of the lattice, as well as the
height of the peak7.

3.5 Helicity Modulus

From [9], eq. 3.1, a formula for the so-called spin stiffness or helicity modulus can be drawn:

Υ = −
1

2
〈E〉 −

1

T

〈

∑

〈i,j〉

sin (φi − φj)~ri,j · ~e

2
〉

, (3.4)

with ~ri,j being the vector from site i to j, and ~e is an arbitraty unit vector. The spin
stiffness is a measure for the energy change caused by a rotation on “the order parameter of

7Note that the maximum of the total susceptibility rises with increasing L. However, plot 3.4 showing
the value per spin illustrates the size dependence more clearly.

12

a magnetically long-range-order system along a given direction by a small angle” [10]. For
small temperatures, there is a long range order, so Υ is close to 1. For temperatures above
Tc, the long range order is destroyed. Hence, Υ dropps to zero. An interesting property of

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

H
el

ic
ity

 m
od

ul
us

Temperature T

L = 8
L = 32
L = 512

2/pi*T

Fig. 3.5: Intersection of the spin stiffness with 2/πT .

the spin stiffnes is shown in fig. 3.5: the intersection of the graph with a line of slope 2/π
gives an approximation for Tc [9]. This will be discussed in the following section.

4 Dealing with Finite Size Effects

According to [8], the shifted temperature is given by

T ∗(L) ≈ Tc +
π2

4c(lnL)2
. (4.1)

The value of T ∗(L) for an infinitely large lattice should be the same as the critical tem-
perature Tc ≈ 0.89213(10) determined in by Olsson in [11]. Figure 4.1a shows the values
extracted from the measurements of the spin stiffness. Figure 4.1b is a plot from values
obtained by examining the maximum of the susceptibility.

The value extracted with a linear fit in fig. 4.1b is

Tc = 0.96± 0.1 , (4.2)

and overestimates Tc. Nevertheless, in [12] Palma et al. found similar deviations from the
theoretical value. The paper yields Tc ≈ 0.948

8extracted from [12], figure 2

13

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 1 10 100 1000

C
rit

ic
al

 T
em

pe
ra

tu
re

 T
c

Lattice size L

Tc from intersection with stiffness
theoretical value

(a) Tc obtained by intersection (cf. fig. 3.5).

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 0.05 0.1 0.15 0.2

T
c

1/ln(T)2

Values obtained from maximum of susceptibility
linear fit

(b) Estimating Tc with a linear fit.

Fig. 4.1: Estimates for the critical temperature.

5 Conclusion

The results presented in the previous chapters agree with the expectations based on references
(both papers and comparison with results from implementation solely on the CPU). The
temperature dependence of different observables in the xy-model have been measured, using
both “state of the art” hardware such as Tesla C2050 as well as “consumer electronics”,
namely the ION-chip resp. GeForce 9400M. To finalize this work, the following figures show
the average computation time for different tasks on different hardware: Fig. 5.1 depicts the
time necessary for the update algorithm. The time consumption of one complete iteration
(update + measurement) is plotted in fig. 5.2. Calculations have been cut to about 1 percent
of the initial time. Even considering latest generation processors will still leave a multiplier
of about 30.

14

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

A
ve

ra
ge

 C
om

pu
ta

tio
n

T
im

e
/ m

se
c

Lattice Size L

2.26Ghz C2D
1.6Ghz Atom

ION
Tesla C2050

Fig. 5.1: Time consumption of one monte carlo step on different hardware.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

A
ve

ra
ge

 C
om

pu
ta

tio
n

T
im

e
/ m

se
c

Lattice Size L

2.26Ghz C2D
ION

Tesla C2050

Fig. 5.2: Spin update and measuring procedure.

15

References

[1] J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys. 6 (1973), 1181

[2] http://research.nvidia.com/content/fraunhofer-unibonn-crc-summary, as of 13.3.2011

[3] http://developer.download.nvidia.com/
compute/cuda/3 2/docs/CUDA 3.2 Math Libraries Performance.pdf, as of 14.3.2011

[4] http://www.beyond3d.com/images/articles/cuda-intro/BGT.png, as of 14.3.2011

[5] http://www.gnu.org/software/gsl/manual/html node/Random-Number-
Generation.html, as of 14.3.2011

[6] http://developer.download.nvidia.com/
compute/cuda/3 2/toolkit/docs/CURAND Library.pdf, as of 14.3.2011

[7] http://www.phy.duke.edu/∼rgb/General/dieharder.php, as of 14.3.2011

[8] S. G. Chung, Phys. Rev. B 60, (1999), 11761

[9] S. Teitel and C. Jayaprakash, Phase transtions in frustrated two-dimensional xy models,
Phys. Rev. B 27, 598 - 601 (1983)

[10] S. E. Krüger et al. , Phys. Rev. B 73, 094404 (2006) ADS

[11] P. Olsson, Phys. Rev. B 52, 4526 - 4535 (1995)

[12] G. Palma et al. , Phys. Rev. E 66, 026108 (2002)

[13] F. Wende, diploma thesis, http://edoc.hu-berlin.de/docviews/abstract.php?id=37361
(15.3.2011)

[14] http://developer.download.nvidia.com/
compute/cuda/sdk/website/samples.html#MersenneTwister, as of 15.3.2011

16

