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Abstract

In this essay we will describe the basic properties of the Bak–Tang–Wiesenfeld model of
sandpiles and analyze the structure of avalanches in the critical state for different configurations
and dimensions of the system. We will show that avalanche properties fulfill power law behaviours,
whose critical exponents we will determine, and scaling relations which we will derive and prove
numerically. We will further analyse the dissipation of the system and show theoretically and with
the simulated data that the frequency spectrum has a 1/fχ form as can also be seen in many other
physical topics. A separate analysis of the flow over the rim and inside the system will be performed
and qualitatively checked against experimental results.

1 Introduction

The basic principles of how sandpiles evolve are
something one is usually confrontated with as
a child at a sunny day on the beach: Sand is
randomly distributed in space and time on a
finite area and slowly the single grains form a
pile, whose slope becomes steeper and steeper,
until it reaches some maximum. If the pile has
reached this state, any additional grain of sand
will tumble down on the side to the floor. But
even more than that: It can happen that it takes
other grains with it such that an avalanche oc-
curs, which may have arbitrary size up to the
whole area of the pile. To grasp this behaviour
in a more theoretical approach, one may say
the system evolves to a critical state, where in-
teractions over all length– and timescales can
occur by simple natural evolution: This prop-
erty can be found in many systems, for example
in the development of earthquakes or forest fires,
and was classified by Bak, Tang and Wiesen-
feld as self-organised criticality [BTW87]. The
following sections will analyse this behaviour
by using the Bak–Tang–Wiesenfeld model
for sandpiles. In section 2 we will explain the
properties of this model and how a critical state

can be reached. In section 3 we will provide a
deeper analysis of the structure of the critical
state: We will formulate definitions of different
observables and motivate that they are subject
to scaling relations in the critical state which we
will verify by measuring scaling exponents nu-
merically and test for the relations to be fulfilled..
Furthermore, we will give a short overview on
1/fχ–noise in physics and discuss its occurrence
in our model in section 4, also providing a sep-
arate analysis of the flow in the interior and
over the rim. The theoretical expectations will
be checked against the simulated dissipation in
the automaton and experimental results. In the
final section 5 we will sum up the results of
our measurements and give some outreach to
other interesting measurements and theoretical
considerations in the context of sandpiles and
self-organised criticality.

2 Definitions and Setups

2.1 Sandpile Automata

A cellular automaton is a system consisting of
a d–dimensional grid of cells which contain dis-
crete values. These cells have a well-defined
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(a) (b) (c)

Figure 1. Visualisation of the 1–dimensional sandpile automata rules. a) A cell contains the discrete slope value
si = hi − hi+1, where the heights are just imaginary bookkeeping objects for motivating the rules; they are never
calculated actually. b) Adding a grain of sand at a point increases the slope value at one cell and decreases it at
a noughbouring cell. c) If the slope at a point surpasses a critical value (here: 1), sand will tumble down by itself
which means that the slope decreases by two units at a cell and is increased by one unit at the neighbouring cells.

neighbourhood relation and their values are up-
dated in discrete time steps.

Definition We begin the explanation of our
automata with the 1–dimensional case, since
its rules can be understood intuitively: Let’s
assume we have a chain of points and each of
those points has an assigned value of the pile
height at that point. The height values can
only have integer values and each unit repre-
sents one grain of sand. Then we define the
cells s0 . . . sN−1 of our automaton as the space
between two points and assign it the discretised
slope at that point: si := hi − hi+1. We will
always work in the slope picture and only use
the heights as auxiliary quantities. Fig. 1a
visualizes this definition.

Perturbation The system somehow needs to
be driven from the ground state to the critical
state by some mechanism of perturbation. Per-
turbation in the sandpile picture means adding
sand. In our above definition of the 1 dimen-
sional sandpile, adding a grain of sand at a
random spot means that the slope at a random
position is increased by one unit and the slope at
the left neighbour cell is decreased by one unit,
as one can easily verify using fig. 1b. This mech-
anism is called conservative perturbation, since
it conserves the total amount of slope. For the
simulation of the behaviour of the critical sys-
tem it is also convenient to define a mechanism
which increases the total slope and therefore per-
forms a faster criticalisation of the system. This

mechanism is called nonconservative perturba-
tion and just increases the slope at a random
cell by 1 unit.

Relaxation The reason we work in the slope
picture is because this is the observable which
leads to the criticality of the system: If the
slope overcomes a constant critical value scrit,
grains will tumble down and by itself drive the
slope back to a noncritical value. Fig. 1c shows
this for scrit = 1: If one cell reaches a value of
2, it will decrease by 2 and the neighbouring
cells will increase their values by 1. If one or
even both neighbouring cells had the maximum
slope value, the relaxation can lead to further
relaxations, until all slopes reach a noncritical
value. This is the avalanche effect and is very
important for later considerations.

Boundaries Since we cannot simulate an infi-
nite area on a computer, we have boundaries at
s0 and sN−1 and need to specify the behaviour of
the system there. There are two commonly used
types of boundaries: Open boundaries connect
the most right point containing height informa-
tion to the ground with constant height 0. This
means that if the most right cell sN−1 relaxes,
its slope only decreases by 1 value. Alterna-
tively, the boundary can be closed. This means,
that sand at the boundary cannot tumble and
therefore the rightmost cell has a constant slope
value of 0.

When defining the boundary conditions, we
only considered the rightmost boundary. The
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leftmost boundary is always considered to be
closed, since we assume that the sandpiles are
symmetric. We only deal with piles which
evolve in a mountain–like structure as in fig.
1a, so the height decreases from left to right.
We now subsume the rules described above:

General relaxation:
sn > scrit : sn → sn − 2

sn±1 → sn±1 + 1
Closed border:

s0 = 0
Open border:

sN−1 > scrit sN−1 → sN−1 − 1
sN−2 → sN−2 + 1

Conservative Perturbation:
sn → sn + 1

sn−1 → sn−1 − 1
Nonconservative Perturbation:

sn → sn + 1

2 Dimensions In more than one dimension,
the rules for the dynamics of the slopes stay
exactly the same and can thus be generalised
easily. However, the evolution of a system with
more than 1 dimension will be completely dif-
ferent, which can be easily realised by going
back to the basic principle introduced in section
1: A two dimensional pile, for example found
in an hourglass, shows a special behaviour in
the way that avalanches may interact or trigger
avalanches of different size at another position
on the lattice. A similar behaviour may be ob-
served when using slightly wet sand on the beach
and building a very steep pile of sand. As soon
as the water evaporates, avalanches evolve and
the slope of the pile begins to shrink. This very
much corresponds to the random perturbation
we are applying to our simulated system.

Starting with two dimensions, we may think
again about the correspondence between slopes
and heights: The relation is now more com-
plex, a direct correspondence between height
and slope is not possible anymore. We define an
average local slope sij using neighbouring bonds
to a point in the slope-lattice as illustrated in fig.
2 by using the relation: sij = h1 + h2 − h3 − h4.

For the stabilisation process, this corresponds
to two grains of sand tumbling from the bonds
1 and 2 to 3 and 4, thus reducing the average
local slope (which we will from now on call slope
again) by 4.

Figure 2. Parametrisation of the slope based on the
height of piles in 2 dimensions. Illustration based on
[CFJJ91]

Applying perturbation, a conservative pertur-
bation corresponds to the addition of a grain of
sand to each of the lower-left bonds 1 and 2, thus
increasing the slope by 2. The nonconservative
perturbation is more complex, for we defined it
having the slope picture in mind: Adding one
to the slope locally means removing 1 grain of
sand on each bond in direction 3 or 4 (as marked
with grey dots in direction 4 in fig. 2) or instead
adding one grain to each bond in direction 1
or 2. This does not directly correspond to the
physical picture one has in mind, but indeed
leads to faster criticalisation in the slope pic-
ture. Concerning the heights, a distribution like
that provided in fig. 3 evolves.

Figure 3. Evolution of the height in a closed 2 dimen-
sional lattice which is subject to nonconservative
perturbation

One may notice that the description in the
classic height model becomes even more com-
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plex in higher dimensions (especially keeping
the simulation itself in mind). For that reason,
in higher dimensions we will limit ourselves to
the slope model only.

d Dimensions In more than 2 dimensions, the
rules essentially stay the same. Using the rela-
tions already described in section 2.1, we can
simply derive the general rules for all dimensions
by replacing the change in slope by a value de-
pendent on the dimension of the system. Taking
the stabilisation step, now not only two grains
of sand tumble as was the case in 2 dimensions,
but d grains change place. For that reason, the
slope is reduced by an amount of 2 · d. The
definitions of the perturbations are generalised
in a very similar way: Now, all axes are taken
into account, thus the conservative perturbation
increases the local slope by d and reduces the
slope by 1 in each neighbouring site closer to
the lower border of the lattice.
The major change one has to keep in mind

is that the amount of border-areas grows fast
with each dimension. For that reason, boundary
effects play a much higher role the higher the
dimension of the system is.
Further details on the measured observables

and the general behaviour will be discussed in
section 3. The generalisation of the rules for
the multidimensional case can be subsumed
as follows, while we always define the lower
borders as closed (for symmetry reasons) and
the upper borders at N − 1 as closed or open
depending on the analysed system:

General relaxation:
s~n > scrit :
s~n → s~n − 2 · d (1)

s~n±~ei → s~n±~ei + 1 i = 1, . . . , d
Closed border:

s~n = 0 ∃~ni = 0 i = 1, . . . , d
Open border:

s~n > scrit :
s~n → s~n − 2 · d+ count

(
i|~ni = N − 1

)

s~n+~ei → s~n+~ei + 1 |~ni 6= N − 1
s~n−~ei → s~n−~ei + 1 i = 1, . . . , d

(2)

Conservative Perturbation:
s~n → s~n + d

s~n−~ei → s~n−~ei − 1 i = 1, . . . , d
Nonconservative Perturbation:

s~n → s~n + 1

2.2 Evolution of the System

After implementing the rules given in section 2,
we can observe the dynamics of the system in
different dimensions, for different perturbation
mechanisms and with different boundary condi-
tions. In this section, we will analyse how the
system evolves if we start from scratch (all cells
set to 0) and if/how criticality is reached.

For describing the state of the system, we will
make use of the average slope, defined as the
arithmetic mean of all cell entries:

〈s〉 (t) = 1
Nd
·
∑

~n

s~n(t) (3)

Since the slope is the transmitted information
of the system, it seems intuitive to check how
this value changes during the evolution of the
system and how the differences in boundaries
or perturbations can be seen here. In example
figures, we measured the time evolution only
for one run, since we do not want a statistically
clean measure of the evolution but an image
of how a specific system behaves. They are
done on a two dimensional 40× 40 grid to keep
comparability with [CFJJ91] and a critical slope
of 7, which is also used for all other data in this
thesis in all dimensions.1.

Closed Boundaries The easier but at the same
time special case is the closed boundary system.
In the slope-model, the outer boundary cells
are constantly set to 0 and thus no sand can
leave the system (a slope of 0 means an equal-
ity of the height of the piles). We first have a
look at the effect of conservative perturbation:
Close to the lower boundaries, the constantness

1One should note that the behaviour of the system
does not really depend on the actual value of scrit: A
higher value just lengthens the time from startup to
the critical state
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(a) closed system with conserva-
tive perturbation

(b) closed system with nonconser-
vative perturbation

(c) open system with nonconser-
vative perturbation

Figure 4. The red site marks the origin of the perturbation, the blue sites are all sites affected by the single
avalanche. The pink sites are all critical sites, i.e. an avalanche can be triggered by performing a perturbation at
these sites.

of closed boundaries “swallows” the subtract-
ing step, whereas on the upper boundaries at
N − 1, the adding–slope–steps of the perturba-
tions are absorbed. So every perturbation on
the interior keeps the slope constant, whereas
the swallowing effects on the boundaries cancel
each other, so globally the average slope can
not rise and get critical! It even decreases over
time, since relaxation on close boundaries can
lead to loss of total slope, which is exactly what
can be observed in fig. 4a: Only few sites are
critical, avalanches are small and negative slope
can be observed at many sites. This effect can
be observed in all the dimensions we analysed
and only the speed of the evolution depends on
the lattice size. The heights of the sandpiles on
all sites evolve in a very natural way: They sim-
ply grow continuously with equally distributed
heights. In fig. 5b, we also see how the average
slope drops continuously for closed boundary
conditions and that we never end up in a criti-
cal state. We will therefore omit this case from
now on, since we are only interested in critical
phenomena which this configuration clearly does
not possess.
Using nonconservative perturbation, we only

increase the local slope by 1. This leads to
a more interesting behaviour: The slopes can
now only decrease by the stabilisation process,
and any surplus on slope is absorbed at the
boundaries. This system reaches a state of
criticality, in which every further perturbation
has a high probability of triggering a local or a
global avalanche over the whole size of the lat-
tice. Looking at 〈s〉, we see that the critical state
the system ends up in does not really change
its average slope anymore (despite some small

fluctuations), even if we perturbate further and
further. So relaxation and perturbation lead to
by itself into a critical state, a so called attrac-
tor which is not lost anymore once reached.
Bak, Tang and Wiesenfeld called this prin-
ciple “Self-Organized Criticality” and it can be
found in many other systems driven by local
rules, e.g. the evolution of fire forests or earth-
quakes. The fact that the criticality is never
lost, even if we perturbate further and furter, is
an important feature and has to be emphasized
at this point, since this is neccessary to do any
statistical relevant measurements later on on
this set of critical states.
Looking at 〈s〉, we see that the asymptotic

value lies under the critical slope. This is be-
cause from 1600 points we have 156 boundary
points with constant 0 slope in the case of closed
boundary conditions. But even if all other non–
boundary–points would be at their critical value,
the average slope would be 6.31, but we see 5.46.
This is an interesting fact, which is true for all
dimensions higher than 12: The asymptotic case
where the system drives itself into is not the
one where all cells contains the critical value,
but it is an ensemble of different configurations:
Several cells lie below the critical value here,
which basically is caused by the relaxation pro-
cess: If a cell is critical, it stays critical, but
once it comes over the critical value, it decreases
itself by 2d, which ends up below the critical
value. So in the end, we assume a stable critical
configuration containing cells with values within
scrit−2d+1 and scrit which is in agreement with

2In 1 dimension the system indeed will end up in a
state with all cells critical and will always stay there.
Therefore sometimes this case needs special treatment

Daniel Schmeier & Oliver Freyermuth Page 5



Sandpiles — Self Organized Critical Systems

our measured value. Since this interval depends
on the dimensionality of the system, we checked
the behaviour for different dimensions as well,
which can be seen in fig. 5c: The higher the di-
mension, the longer it takes to reach the critical
state, which is clear because the total amount
of cells is larger so it needs more perturbation
steps. But one also sees that the asymptotic
value of the average slope decreases drastically
for higher dimensions, which can be understood
with the argumentation from before.

Open Boundaries Considering open bound-
aries in our model, the rules change for the
upper boundaries (at N − 1 in each dimension):
They are now treated like normal lattice sites,
with the difference that in the stabilisation step
the slopes can only distribute to neighbours that
are available, i.e. only to 1 neighbour in the 1
dimensional model on the open border. The
remaining slope is not lost, but remains at the
lattice site. This corresponds to a reduction of
the height of the pile at the lattice site when con-
sidering the rules for the 2 dimensional system
(refer to section 2.1). When observing the be-
haviour of the system, this means that no slopes
are absorbed at these boundaries, but rather
conserved or even reflected back. In general,
the system qualitatively behaves nearly similar
to the closed-boundary-system with nonconser-
vative perturbation, as can be seen in fig. 5a,
the asymptotic value of 5.80 is slightly higher,
since we have less zero counting closed cells. An
image of the slope distribution in 2 dimensions
can be observed in fig. 4c and also shows major
similarity to the closed boundary case.

Using conservative perturbation, a new effect
may be observed: In the closed case, the aver-
age slope was shrinking due to the absorption
of slope in the boundary. In the open system,
the system collects slope at the open bound-
ary, for slope is never lost in the stabilisation
step at this border. After many steps of contin-
uous perturbation and stabilisation, a critical
system can evolve which qualitatively also be-
haves mostly similar to the system produced by
using nonconservative perturbation. Looking
at the evolution of the average slope in 5b, we
see that it takes a higher amount of time steps
for the system to come to the critical case as in

the nonconservative case, since increasing the
total slope can only happen by perturbating
at the closed boundaries, as explained before.
The asymptotic value is approximately the same,
though.
Let’s sum up the results of our comparision:

The closed conservative case does not show any
asymptotics and is therefore neglected from now.
All other cases show a critical state after pertur-
bating the system long enough: These critical
states are ensembles of different configurations
which fluctuate around the same average slope
value. Further perturbation may change the
configuration, but it will stay in the critical en-
semble (it is, in this sense, ergodic). Systems,
which show this behaviour, are named to possess
self–organized criticality. For nonconservative
open and nonconservative closed, only the aver-
age slope asymptotics change, the dynamics are
quite similar. Conservative open systems need
a much longer time to reach the critical state,
but then they have reached the same average
slope value as the nonconservative ones.

Reaching the critical state We have seen how
the system drives itself into the critical state if
we start from scratch and continuously pertur-
bate the system if it is stable until criticality
is reached. There is a different method of driv-
ing the system into criticality, which we call
overcriticalising: We set each cell to a random
value between scrit + 1 and 2scrit, and let the
system, which obviously is unstable then, relax
via (1). The system will end up in the same
critical ensemble, as one can see in fig. 6). Since
relaxation happens simultaneously on all lattice
cells it works much faster, not only on the level
of time steps but also on processing time basis.
This is why we will use this method of driving
the system critical for the rest of this thesis.

3 Scaling Exponents
3.1 Avalanche Properties at Criticality
Definitions After the system has reached its
critical state, for each perturbation it is very
likely that an avalanche occurs which can change
the system on small or large ranges. We are in-
terested in how these avalanches behave and
whether they underlie scaling relations as one
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(a) Nonconservative perturbation
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(c) Asymptotic behaviour of slope
for different dimensions (in
nonconservative closed)

Figure 5. Time evolution of the average slope for different perturbation mechanisms, boundary conditions and
dimensions
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Figure 6. Comparision of criticalisation by starting
from scratch and by overcriticalising the system

would expect from a critical system. To ac-
complish this task, we defined the following ob-
servables. First we define the instantaneous
dissipation rate fα(t) of an avalanche α:

fα(t) :=
∑

~n

Θ
(
s~n(t) > scrit

)
(4)

So it returns the amount of cells at a specific
time step t which are going to relax in the next
update of the lattice. It is called dissipation,
since in the sandpile picture the sliding of sand
to a lower level equals a loss of potential energy,
so each slide lowers the total energy of the sys-
tem. We define the size of an avalanche as the
total amount of dissipation it creates:

s :=
∞∫

0

fα(t) dt (5)

The lifetime of an avalanche is the total amount
of time steps where dissipation occurs:

t := max(t|fα(t) > 0)−min
(
t|fα(t) > 0

)

(6)
Additionally we define the radius as the longest
of all distances (which is the length of the short-
est path over the lattice) from the starting point
~n0 of relaxation to any point the avalanche
reaches

r := max
(
d|d = |~n, ~n0| ,∀~n∃τ : s~n(τ) > scrit

)

(7)

We analyzed the probability distributions of
these observables in the critical state of the sys-
tem under the assumption that they scale accord-
ing to the behaviour of a critical system. Fur-
thermore, we assume that these three stochastic
variables in the critical case have certain rela-
tionships, from which we define the following
scaling exponents:

P (S = s) ≈ s1−τ

P (T = t) ≈ t1−α

P (R = r) ≈ r1−λ

E(S|T = t) ≈ tγ1

E(T |S = s) ≈ s1/γ1 (8)
E(S|R = r) ≈ rγ2

E(R|S = s) ≈ s1/γ2

E(T |R = r) ≈ rγ3

E(R|T = t) ≈ t1/γ3

These assumptions are based on the fundamental
properties of a critical system: It does not con-
tain any intrinsic time and length scale, which
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in the sandpile picture means that avalanches
can both act locally on a small set of cells and
globally over the whole size of the lattice. That
this is the case comes from the fact that in the
asymptotic state not all cells are critical: If this
would be the case, than every avalanche would
reach over the whole lattice. But since critical
cells can happen to appear isolated, also small
avalanches can occur. We see that E(X|Y ) and
E(Y |X) are defined using the same γi: If we as-
sume that observable X and Y are related with
a certain exponent, we also have to assume that
conversely they are also related with the inverse
exponent. This is something we are going to
check by our data, where we will calculate γi
and 1/γi independantly from each other.
We already stated, that the 1 dimensional

case is special, since it is attracted to the state
where all cells are critical. This is obviously
not compatible with the above explanation for
which in this section, the one dimensional case
will not be treated.

Scaling Relations We have now defined many
exponents which can basically be obtained by
simulating experiments and fitting the expo-
nential functions independently to the different
distributions one gets. However, it turns out
that if one treats the above definitions in a more
theoretical sense then they are not independent
at all, as we are now going to show (this proof
is based on the one in [CFJJ91]):

Having three statistical observables X, Y and
Z, we can relate them to each other by taking
the following identity for E(X) :
∫
xP (X = x) dx

=
∫
xP (X = x)

∫
P (Y = y) dx dy (9)

=
∫∫

xP (X = x, Y = y) dx dy

=
∫∫

x
P (X = x, Y = y)

P (Y = y) P (Y = y) dx dy

=
∫∫

xP (X = y|Y = y)P (Y = y) dx dy

=
∫
E(X|Y = y)P (Y = y) dy (10)

Where from (9) on we could also have put Z
instead of Y and then would receive a different
version of (10). These two can be set equal

since they are both evolved from E(X). Putting
X = S, Y = T and Z = R we then get

∫
tγ1t1−α dt =

∫
lγ2t1−λ dl (11)

Now we can transform t into l using our relation
properties in (8): L = T 1/γ3 and formulate the
equality of the exponents on both sites. If we
do so and do the same for other combinations
(like X = T, Y = S,Z = L etc.), we gain three
independent relations which we can substitute
into each other to simplify the results. One then
gets the following set of scaling relations:

γ2 = γ1 · γ3

α = 2 + λ− 2
γ3

(12)

τ = 2 + λ− 2
γ2

These relations will help us to check our data
for consistency: We will fit the exponential be-
haviours in (8) independently from each other
and then look whether the results although
gained independently are in numerical agree-
ment with each other concerning (12).

3.2 Simulation Results
Procedure To take measurement data, we use
white-noise perturbation (adding slope at ran-
dom positions and at random points in time) to
generate a high amount of avalanches in different
systems. Algorithmically, we always peturb ran-
dom points one after another until an avalanche
is created: We then start the measurement un-
til the system is stabilized again, and then re-
peat the perturbation process. Another method
would be to overcriticalise the system after each
analysis by setting the individual lattice sites
to random values well above scrit, however, an
analysis of the autocorrelation using this ap-
proach and the (by far faster) method of a sin-
gle perturbation until an avalanche is triggered
proofed that both methods are usable, so we
took the latter. This also conforms to the idea
of self-organised criticality, because the system
criticalises itself after each avalanche because of
ergodicity.

Determinating Scaling Exponents For mea-
suring the exponents in (8), we first determined
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all probability densities P (X = x) and joint
probability densities P (X = x, Y = y) using the
data we collected by producing a high amount of
avalanches and measuring their properties. The
latter are needed to calculate the conditional
expectation values via:

E(X|X = y) =
∑

x

x · P (X = x|Y = y)

=
∑

x

x · P (X = x, Y = y)
P (Y = y) (13)

We draw the distributions in a double loga-
rithmic representation, since here a power law
scaling is represented by a straight line and there-
fore can be identified easily visually. One can
see, that all distributions and expectation val-
ues indeed fulfill scaling relations, at least over
one or more intermediate decades. Deviations
from the assumed scaling behaviour were to be
expected: Our simulations are affected by the
discreteness of the lattice in the lower regions
and by its finite size on the upper regions. We
will take a closer look at the latter ones in the
next paragraph.
To the intermediate scaling regions we per-

formed a Levenberg–Marquard–Fit via the
free tool Gnuplot [WKm08] to determine the
critical exponents. The uncertainties on these
exponents mostly evolve from manually choosing
the ranges of the scaling area for fitting: These
are sometimes difficult to identify because sta-
tistical fluctuations and/or overall curvatures
make it difficult to identify the clear start and
end of the intermediate region. We estimate an
uncertainty on the exponents τ, α, λ, γi of 0.05
for dimensions 2 and 3 and 0.1 für dimensions
4 and 5. The 1/γi have errors of 0.03 in 2 and
3 dimensions, 0.05 in 4 and 5 dimensions The
results for the exponents can be seen in tab. 1
and they show a very good agreement to results
in [CFJJ91].

The values for the exponents and fig. 7 and 8
shows that the exponents depend on the dimen-
sion of the system. If this problem has a critical
dimension from which on scaling exponents re-
main constant, it is larger than 4 according to
these data, which is in agreement to results in
[CFJJ91]. We tried to take data for the 6 di-
mensional case also, but statistics were not good
enough to perform an analysis of comparable
accuracy, but it seemed at first sight as if also

there a difference of the power law was visible
so that probably the critical dimension is even
higher than 5.
In tab. 2 we opposed values which according

to the scaling relations in (12) should correspond
to each other. We see only small discrepancies
which lie within numerical accuracy. This nu-
merically proves our statement, that the station-
ary system is critical and leads to fundamental
scaling properties for the avalanches.

Finite Size Scaling As already explained, the
asymptotic behaviour of the distribution func-
tions can be explained by the discreteness of
the lattice and its boundaries. We have taken
a closer look at the finite size behaviour and
checked whether deviations at higher regions
really can be related to the boundaries of the
lattice. We do this exemplarily for the radius
of the avalanches at closed boundary conditions,
since they make the system symmetric, and for
the nonconservative perturbation mechanism.
For this task we suggest a finite size scaling hy-
pothesis: All effects caused by the size N of the
lattice for the distribution of the scaling variable
R depend on the ratio3 (N−2)σ/r, with σ being,
according to [BTW88], a dynamical critical ex-
ponent which has to be found. We make the
following new scaling ansatz:

P (R = r) = r1−λ · F ((N−2)σ/r) (14)
with F (x) x→∞−−−→ 1 (15)

With this ansatz, we include the assumed finite
size effect but also make sure that it vanishes
if the orders of lattice size and radius differ to
much and no effect should be visible. With re-
ordering we get P (R = r) · rλ−1 = F

(
(N−2)σ/r

)
,

so by taking data we get P (R = r) for differ-
ent N , we determine the exponent λ for the
midrange area and then draw P (R = r) · rλ−1

against (N−2)σ/r and check whether a σ exists
such that all data for different N follows the
same functional behaviour F . Fortunately, it
does so for σ ≈ 1.00, as can be seen in fig. 9.
This value for σ is reasonable: The maximum
radius for a given size N in two dimensions

3We have to take N − 2 instead of the commonly used
N since we have to take into account that N includes
two closed boundary cells which never contribute to
avalanches.
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τ α λ γ1 1/γ1 γ2 1/γ2 γ3 1/γ3

co
op

2D 40 2.15 2.17 2.06 1.60 0.63 2.05 0.50 1.31 0.79
3D 20 2.40 2.66 2.72 1.72 0.57 2.60 0.39 1.51 0.62
4D 20 2.5 2.7 2.8 1.8 0.57 2.8 0.34 1.7 0.59
5D 15 2.6 3.0 3.0 1.8 0.53 2.9 0.33 1.7 0.50

nc
o
op

2D 40 2.05 2.05 1.96 1.56 0.64 2.05 0.49 1.33 0.77
3D 20 2.31 2.49 2.51 1.74 0.56 2.78 0.38 1.69 0.61
4D 20 2.3 2.7 3.6 1.7 0.56 2.9 0.31 1.7 0.58
5D 15 2.5 2.9 3.7 1.7 0.51 3.3 0.34 1.9 0.54

nc
o
cl

2D 40 2.03 2.07 2.03 1.58 0.61 1.98 0.50 1.28 0.78
3D 20 2.36 2.72 3.26 1.72 0.55 2.52 0.38 1.42 0.64
4D 20 2.6 2.8 3.5 1.8 0.53 3.2 0.31 1.9 0.61
5D 15 2.6 3.2 3.7 2.0 0.50 3.7 0.29 2.1 0.50

Table 1. Scaling exponents determined by fitting to simulated probability distributions and conditional expectation
values
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Figure 7. Probability distributions gained by simulating a high amount of independant avalanches and measuring
their properties. Dots give the measured data, dashed lines the fitted power laws.
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Figure 8. Conditional expectation value dsitributions for all possible combinations of the three avalanche observ-
ables, gained by simulation. Dots give data, dashed lines fitted power law functions
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γ1 1/γ1
−1 γ2 1/γ2

−1 γ1γ3 γ3 1/γ3
−1 α 2 + λ−2

γ3
τ 2 + λ−2

γ2

co
op

2D 40 1.60 1.58 2.05 2.00 2.09 1.31 1.26 2.17 2.04 2.15 2.02
3D 20 1.72 1.75 2.60 2.56 2.59 1.51 1.61 2.66 2.47 2.40 2.27
4D 20 1.8 1.8 2.8 2.9 3.0 1.7 1.7 2.7 2.5 2.5 2.3
5D 15 1.8 1.9 2.9 3.0 3.1 1.7 2.0 3.0 2. 2.6 2.3

nc
o
op

2D 40 1.56 1.56 2.05 2.04 2.07 1.33 1.29 2.05 1.97 2.05 1.99
3D 20 1.74 1.78 2.78 2.63 2.94 1.69 1.63 2.49 2.30 2.31 2.18
4D 20 1.7 1.8 2.9 3.2 3.0 1.7 1.7 2.7 2.9 2.3 2.6
5D 15 1.7 2.0 3.3 2.9 3.1 1.9 1.9 2.9 2.9 2.5 2.5

nc
o
cl

2D 40 1.58 1.63 1.98 2.00 2.02 1.28 1.28 2.07 2.02 2.03 2.01
3D 20 1.72 1.81 2.52 2.63 2.44 1.42 1.56 2.72 2.88 2.36 2.50
4D 20 1.8 1.9 3.2 3.1 3.4 1.9 1.6 2.8 2.8 2.6 2.5
5D 15 2.0 2.0 3.7 3.4 4.2 2.1 2.0 3.2 2.8 2.6 2.5

Table 2. Comparision of theoretically equal terms
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Figure 9. Finite size scaling analysis

and closed boundaries is (going from one cor-
ner to the other and neglecting boundary fields)
2 · (N − 2), a linear relation with an exponent
σ = 1.

4 Power Law Behaviour
4.1 1/f–noise in physics
1/f–noise is to be found in many areas in modern
physics. One example that may come to mind is
electronics, for all electronic devices are subject
to 1/f–noise. Once a driving current is present,
so-called “excess noise” can be observed, which
shows a 1/f–behaviour. It is also very likely that
without the presence of a driving current, resis-
tance fluctuations occur (according to [Wei88]).
Another example are semiconductors. It is

very likely that the origin of the noise observed
in these devices is a form of charge trapping–
detrapping and as such caused by the establish-
ment of a two–state system. A direct measure-
ment is possible by varying the interface density
of states, which indeed is proportional to the
magnitude of 1/f–noise.

1/f–noise can even be the dominant noise up to
1 MHz in SQUID’s (Superconducting quantum
interference devices), and the high amount of
noise is not fully understood as of [Wei88].

It is also observed that in general, the spectral
density scales inversely with the system size, as
one would assume when thinking about local
independent sources of noise (which can not
generally be assumed for all systems discussed
here). We will also use this assumption in our
analysis of the power spectrum of sandpiles. The
observed spectra in real-physics examples scale
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in a range of 0.8 < χ < 1.4 for the exponent of
f−χ (see [Wei88]), and a low-frequency cutoff
is always observed. This is caused by finite
size effects or by a breakdown of the system
(changing of order or phase of the system, e.g.
by crystallisation).
Everyday examples include the noise gener-

ated by waterfalls. This noise source can be
easily understood using the simple assumption
of different sizes of drops of water: Smaller drops
can not develop high speeds (because of friction),
so they produce noise with lower amplitude hit-
ting the water below (and with higher frequency
because of their size). 1/f–noise (and as such,
also the sound of a waterfall) is also understood
as the kind of noise which sounds equally loud
in all audible frequency areas to an average hu-
man being. Several names for 1/fχ noise are
in use, for χ = 1, “pink noise” is widely used,
while “red noise” corresponds to χ = 2. How-
ever, these definitions are not always kept and
might describe completely different exponents
(or be generalised for a wide range of χ).

Concluding the short overview of the occur-
rence of 1/f–noise in physics, no single mecha-
nism can be found to explain all the observed
spectra, although the behaviour shows many
similarities. As such, an analysis of the sandpile–
model may provide further insight into the over-
all behaviour of a critical system and the dy-
namics of granular materials (which is important
for applications in industry), but not into the
general origin of the observed noise. However, a
research on the origins of 1/f–noise is very useful,
as these effects can also be used for measure-
ment themselves: If the origin of the noise is
caused by local independent sources, a measure-
ment of the noise allows for the determination
of inhomogeneous current patterns, for the ex-
pectation is a uniform distribution in a perfect
system. Such measurements can be used to find
inequalities and disruptions in materials. In this
thesis, we will focus on the power spectrum of
the sandpile–model and use the assumption that
all avalanches are independent, which is a valid
approach for such an idealised system.

4.2 Expectation
We can predict the spectrum approximating the
fα with a box function. Utilising the height s/t
and the avalanche lifetime t we define (according

to [JCF89]):

fs,t(τ) = s/t · 10<τ<T

So s =
∫ t

0 s/tdτ is fulfilled trivially. We used
the definitions of s and t as provided in sec-
tion 3. Using a joint probability distribution
P (S = s, T = t), we can then find the power
spectrum as:

S(ω) = 4 · ν
(ω)2

∞∫

0

G(τ) sin2
(
ωτ

2

)
dτ

G(T ) = 1
T 2

∞∫

0

P (S = s, T = t) · s2 ds

with ν being the total rate of the signals. The
complete derivation of this formula has been
provided in [JCF89] and shall not be repeated
here in detail. The function G(T ) is of most
interest here, for it allows a prediction of the
expected behaviour: Assuming an exponential
form of the probability distribution leads to
G(T ) ∝ Tα · exp

(
−T/T0

)
and the interval which

was also selected above should behave as:

S(ω) =




ω−(3+α) if α < −1
ω−2 if α > −1

which corresponds to a 1/ω2 expectation and
shows how finite size effects break this expecta-
tion for α < −1. For lower frequencies ω < 1/T0,
S(ω) becomes constant (as can also be seen in fig.
11), while for higher frequencies, a falloff with
1/ω2 can be observed. This theoretical observa-
tion contradicts the original claims by [BTW87].
In the following paragraphs, we will analyse

whether the physically wide-spread 1/f–noise can
be found in our system or whether the expected
1/f2–noise is present in the simulated data.

4.3 Process of Measurement
Utilising a high amount of statistics, we can
analyse the frequency spectrum directly from
our simulated system. To do so, we need to
make sure that there is no interference between
different avalanches, so we can regard them as
individual events, which can be assumed for a
sufficiently large system. Algorithmically, the
data is taken as described in section 3.2.
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(c) The summation of 1000 independent dissipation
functions entered at random positions into a fixed
time scale.

Figure 10. Analysing the frequency of the system:
Building the spectrum from single independent per-
turbations.

For each avalanche, we introduce an indica-
tor function pα(τ) which indicates whether an
avalanche α has been triggered in the time range

τ, τ+dτ . Dividing the time axis into intervals of
length δ, we can then define a total dissipation
rate, which is the linear overlap of the dissipation
rates of the independent perturbation processes
(according to [CFJJ91]):

j(τ) :=
∑

α

τ/δ∑

m=−∞
fα (τ −mδ) pα (mδ)

This new observable is the central measurement
variable in the following analyses.

If we now apply many randomly performed
perturbations with fixed probability, pα (mδ)
transforms into a stochastic process Pα (mδ)
(for fixed α), which thus also changes j(τ) to
a stochastic process J(τ). Algorithmically, this
corresponds to adding the dissipations of the
single events at a random time position into
a dissipation-array of fixed size, whose end is
linked to the start of the array thus forming a
ring. At first, only a single dissipation is added
as can be seen in fig. 10a. As more and more
dissipations are added, they start to overlap, as
shown in fig. 10b.
A summation of the single dissipation func-

tions leads to a simulation of the total dissipa-
tion as depicted in fig. 10c. This image already
allows for a qualitative analysis of the noise: The
superimposed dissipation functions spread over
all time scales (as constructed) and the result is
more regular than white noise, but less regular
than a random walk. These are features of 1/f-
noise as stated in [BTW88]. Further analysis is
done by conducting a Fourier transform.
We use the following discrete transformation

rules:

<
(
f(k)

)
= 1√

T
·
T∑

τ=0
· cos

(
2 · π · k τ

T

)

=
(
f(k)

)
= 1√

T

T∑

τ=0
· sin

(
2 · π · k τ

T

)

∣∣f(k)
∣∣2 =

(
< (f)

)2 +
(
= (f)

)2

And then define the power spectrum:

S(f) = 〈
∣∣f(k)

∣∣2〉

because the obtained spectrum
∣∣f(k)

∣∣2 is still not
very stable. Using many runs, we can use the av-
erage 〈

∣∣f(k)
∣∣2〉 and create a double-logarithmic
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co op nco op nco cl

1D 100 −1.94 −3.86 −3.87

2D 20 −1.42 – –
2D 40 −1.65 −1.60 −1.78
2D 100 −1.63 −1.60 −1.61

3D 20 −1.74 −1.77 −1.81
4D 20 −1.78 −1.78 −1.92
5D 15 −1.79 −1.88 −1.80
6D 15 −1.65 – –

Table 3. Exponents of the power law behaviour
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Figure 11. A frequency spectrum for a nonconserva-
tive closed system obtained with a dataset of ≈ 15
million perturbations.

plot of S(f) against k/T to visualise a stable
frequency spectrum as shown in fig. 11.

This graph basically shows three regions of in-
terest: For lower frequencies, a constant value is
observed, then, the power spectrum drops with
an 1/fχ-behaviour, and finally, a fast cutoff can
be seen. The near-constant value corresponds
to white noise and is caused by finite-size effects,
the fast falloff for high frequencies can also be
explained with the finite size of the lattice sites
themselves.

4.4 Results
As discussed in section 4.3, we performed an
analysis of the frequencies for different lattice
sizes and dimensions using white-noise pertur-
bation (as also done in section 3.2). The results
can be seen in fig. 13 and 12. The frequency
behaviour discussed in section 4.2 can be ob-
served for any dimension and lattice size apart

from the 1–dimensional system, in which special
cases evolve. This case will only be shown in
our results to allow for an easier understanding
of the analysis itself, for the 1–dimensional sys-
tem only shows global avalanches and as such
does not behave like a system of self-organised
criticality we want to analyse.
A first analysis of the lattice-size depen-

dency is shown in fig. 12. Apparently, al-
though we took high statistics (about 100 million
avalanches), the data for small lattices is very
noisy. This can be explained with the fact that
the initial assumption does not hold anymore:
In small lattices, the avalanches can not be re-
garded as independent, and a continuous pertur-
bation as done in section 4.4 would be necessary.
For that reason, we tried to analyse the biggest
lattices in every dimension we could still simu-
late with the computer systems at hand. The
data for the 2 dimensional lattice with N = 100
seems to be nearly perfect although the taken
statistics (50 million perturbations) was smaller.

Analysing the system in different dimensions
and with different perturbations, the frequency
behaviour is qualitatively similar for all per-
turbations and dimensions. The 1–dimensional
system shows a 1/f2 behaviour for conservative
perturbation and open boundaries, while for non-
conservative perturbation, 1/f4 behaviour can be
seen. This corresponds to the effects observed
in section 2.2: Nonconservative perturbation of
a critical state always leads to an avalanche run-
ning over the whole system, while conservative
perturbation only affects parts of it.

Fitting the exponents using the free tool Gnu-
plot (see also section 3.2), we can determine
whether the qualitative observation is also cor-
rect mathematically. We also estimate an error
of 0.1 on each exponent, mainly caused by the
manual selection of the fitting region. Our re-
sults are listed in tab. 3 and in general corre-
spond to the 1/f2 behaviour for all systems and
perturbation mechanisms.
As can be seen the measured exponents are

not exactly −2 as expected for 1/f2 behaviour.
This deviation is a result of boundary and finite
size effects and is compensated by using the
function G(T ), as explained in section 4.2.

Like already mentioned, another approach us-
ing continuous perturbation of the system would
allow for the analysis of smaller lattice sizes
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Figure 12. Analysis of frequency spectra for different lattice sizes
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Figure 13. Analysis of frequency spectra for different dimensions

and might provide better statistics. Further-
more, to be able to compare the resulting data
with measurements on physical systems, a sep-
arate analysis of the dissipation in the interior
and on the rim might be of interest, as sug-
gested by [JCF89] and measured experimentally
in [JLN89]. This analysis will be performed in
the following section.

Flow over the Rim One can also analyse the
flow over the rim in an open system analogously
to a real sandpile as suggested by [JCF89]. This
should produce results which can be compared
to measured data in experimental setups, and
has significant advantages because a different
process of measurement is used. Several crucial
points are changed: The system is now per-
turbed randomly at a constant random rate,
which means a probability that perturbation
takes place is used for each step. Concerning the
measurement, we continuously save the lengths
of pulses on the open rim (i.e. the relaxation
of sites on the boundaries in steps of time) and
also the time between such pulses. Furthermore,
the same observables are measured inside the
system. This different perturbation mechanism

allows us to study smaller lattices and to achieve
a much higher rate on the rim (and thus lowers
the amount of needed calculation steps).

Now, we also want to compare the behaviour
with experimental results. As such, we sum-
marise all measured time distances for the spe-
cific lifetime of the pulses and create diagrams
for the flow over the rim and down the slope.

Analysing fig. 14, one can see that the lifetime–
distributions on the rim and in the interior all
behave Lorentzian. Differences can be found
especially for the 1–dimensional system with
conservative perturbation, where the lifetime
is nearly constant and the pulse distance is
widely spread. The effect of the behaviour in a
1–dimensional system on the frequencies will be
discussed later.
The pulse distances in general appear to

fall off exponentially in all dimensions (the 1–
dimensional system again behaves differently),
while a long tail of the distributions is always
present. We can now perform a frequency anal-
ysis as already done in section 4.3. As already
stated, we will differentiate between dissipation
on the open borders and inside the system. Fur-
thermore, the constant perturbation allows us
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Figure 14. Comparision of Lifetimes and pulse distances in the interior and on the rim in both perturbation mecha-
nisms
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Interior Rim
co op nco op co op nco op

1D 100 −1.82 −2.36 −0.07 0.00

2D 20 −1.50 −1.49 −0.90 −1.88
2D 40 −1.54 −1.50 −0.92 −1.89
2D 50 −1.54 −1.50 −0.92 −1.89
2D 75 −1.54 −1.50 −0.93 −1.89

3D 20 −1.58 −1.68 −1.28 −1.72

Table 4. Exponents of the power law behaviour on the
rim and interior

to save all dissipation functions in an array con-
tinuously, so no further randomisation (as done
previously by inserting the dissipation functions
at random points in time) is needed. This is
the case because the linear overlap is already
performed by the continuous perturbation.
At first, we want to analyse the effect of the

used method of perturbation. The boundaries
are always open (which in our case means the
upper boundaries are open and the lower bound-
aries are closed), because otherwise there would
be no flow of slope on the rim (closed border
means s = 0). As can be clearly observed in fig.
15, the two methods of perturbation give rise to
very different behaviour, which will be analysed
in the following paragraphs.
We can find regular spaced peaks in the fre-

quencies gained by applying nonconservative
perturbation. For these data-sets, a probability
of 5 % was used that another random point is
perturbed at each step of time. A higher ratio
of perturbation might be of interest to research
the origins of the regular patterns. For that
reason, we also measured a similar data-set with
nonconservative perturbation and a probabil-
ity of 15 % marked by “HP” in the given plots.
Analysing the results for nonconservative per-
turbation, it appears that the resulting data for
measurements of flow over the rim can not be
used. This can now be explained, because the
nonconservative effects lead to an increase in the
lifetime of avalanches so the frequency spectrum
shows a dependency on the amount of pertur-
bation that is applied. This can be observed in
fig. 15. The regularly spaced peaks also appear
to depend on the amount of perturbation, and
we assume that they are caused by interference

effects between the avalanches on the border.
In retrospect, we could not expect physically
relevant results for the flow over the rim using
nonconservative perturbation, as becomes clear
when thinking about the definition: Nonconser-
vative perturbation increases the slope by 1, but
changes the heights of the piles on the lattice in
a non-physical way as described in section 2.1.
Analysing the results of conservatively per-

turbed systems, we see that there is no influence
of the amount of perturbation performed on the
spectrum itself. The region of interest for the
determination of the exponents appears to be
perfectly straight. This is also an important dis-
covery for all measurements performed on the
complete power spectra in section 4.4, where the
mechanism (single perturbations and overlap of
dissipation functions of independent avalanches)
is used. This process gives usable results for
nonconservative perturbation (because of the in-
dependence of the avalanches), but has another
flaw for small lattices, as will be discussed later.
We can now take a look at fig. 16 to check

the effects of continuous nonconservative pertur-
bation for different dimensions and lattice sizes.
As can be seen, the spectra are all influenced
by interference of the perturbation, and only
a small subset of the high frequencies appears
to be “clean” enough to perform a fit. This
becomes most apparent in the 1–dimensional
system: The continuous perturbation drives the
system to high positive slopes close to the open
border, which is also the reason why no entries
can be seen for the 1–dimensional system in fig.
14c and fig. 14d. The shown data-set includes
5 runs starting with an overcriticalised system
and a single run starting with a system resulting
from another run. For that reason, two double
peaks can be made out marking the size of the
positive slope region. The frequencies on the
border result in a straight line, as predicted by
[JCF89] and becoming apparent when keeping
in mind that the open border of a 1–dimensional
system is only a single lattice site.
The results for conservative perturbation

shown in fig. 17 are of much higher inter-
est for the analysis. The interior frequencies
all show very similar behaviour, with the 1–
dimensional system showing a different expo-
nent. The frequencies for the flow over the rim
also appear to be alike, with the exceptions
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Figure 15. Analysis of the flow over the rim for different methods of perturbation
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Figure 16. Analysis of the flow frequencies using nonconservative perturbation
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Figure 17. Analysis of the flow frequencies using conservative perturbation
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(a) CCD image
of rice pile

(b) Data table of different rice types

Figure 18. Experiment to analyse the frequency spectrum of piles built by different types of rice ([FCMS+96])

being the 1–dimensional system with an expo-
nent close to zero (as expected) and a slightly
larger exponent than for all other dimensions
in the 3–dimensional system. We use the free
tool Gnuplot (see also section 3.2) to fit the
exponents, assuming an error of 0.1 on each ex-
ponent caused by the manual selection of the
fitting region. The nonconservative exponents
are only given for reasons of comparison, but
they should be interpreted with great caution,
because we assume errors in the order of 0.5
caused by the interferences of the perturbation.
The results for the exponents are given in tab.
4 and the orders of magnitude and qualitative
behaviour also correspond to the observation in
experiments performed with sand, which have
for example been performed in [JLN89].

5 Conclusion and Outreach
5.1 Outreach
We have shown only a little part of possible
considerations dealing with the BTW model of
sandpiles. Interesting extensions are for example
a continuisation of the rules, which then leads
to the Burridge–Knopoff–model, which can
be used to describe the evolution of earthquakes
(see [CO92]). Also the fact that the critical slope
can depend on the actual form of the grains
can be taken into account by using dynamical
varying critical slopes (see [Fre93]).

As already mentioned at certain points, there
have also been performed some real experiments
in order to test the predictability of the model,
like [FCMS+96] or [JLN89], where the focus lied
on the power spectra. They come to the result,

that at some specific aspects, 1/f and 1/f2 can be
seen, but also that there is much more than the
theory considers, like hysteresis in the critical
slope value or different tumbling mechanisms
taking into account the actual size and form
of the individual grains. This was interesting,
since Bak–Tang and Wiesenfeld] assumed
([BTW87]) that at the critical state of such an
self–organized system, internal structures do not
play a role anymore and that only the global be-
haviour of the system is important, which clearly
was falsified using different internal structures
(like different types of rice, see fig. 18) and show-
ing that the critical system behaves differently
then.

5.2 Summary
We have introduced the Bak–Tang–
Wiesenfeld–model of sandpiles and how it
drives itself into an attractive state by the
principle of self–organized criticality. Analysing
the properties of avalanches occuring when
perturbating the critical pile has shown us why
the attractor is indeed critical and that these
properties fulfill power law behaviours, whose
critical exponents we determined by simulating
the model and fitting to our numerical data.
We have seen that theoretically derived scaling
relations could be verified within numerical
accuracy. Analysing the power spectra, we
confirmed a general 1/f2 behaviour for spectra of
the whole lattice across all checked dimensions
(up to 6D) and could also compare our data with
experimental observations when performing
separate analyses for the interior and the flow
over the open rim.
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