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1 Motivation

The theory described by the Lagrangian

L =
1

2
(∂φ)2 − 1

2
µ2φ2 − λ

4!
φ4 (1.1)

is the simplest case of an interacting quantum field theory with a real field φ. It serves as a toy model
to study the principles of quantum field theory, especially renormalization. Its physical importance
lies in its application in the Standard Model, where the Higgs field is described by (1.1), only with
the difference that the Higgs field is a complex doublet.

2 Theory

2.1 Path integral

The path integral formulation of φ4 theory is the foundation of our algorithm. The main quantity
is the vacuum-to-vacuum transition amplitude Z[J ] with an additional source J(x) coupled to the
field φ(x). This source is a tool to extract theoretically useful quantites out of the functional Z[J ].

Z[J ] = 〈0| e−iHT |0〉 =

∫
Dφei

∫
d4x(L+Jφ) (2.1)

The time T is understood to go to ∞. The functional integral runs over all possible functions φ(x)
and is in general not solvable. This is why theorists are forced to do pertubation theory by expanding
the exponential. By going to a field on a lattice, we can generate some field configuration and
evaluate the integrand numerically. Since complex numbers should not appear in our calculation,
we introduce imaginary time t = −iτ . This gives the substitutions ∂t = i∂τ and dt = −idτ . Also
the time integration range rotates into the imaginary axis. If the integrand is holomorphic, the time
range can be shifted back to the real axis again, so that the integration still runs over the whole
real spacetime. This procedure is called Wick rotation. The derivatives now read

(∂φ)2 = −
(
(∂τφ)2 + (∇φ)2

)
(2.2)

like an Euclidean metric. We can now write down the vacuum amplitude

Z[J ] =

∫
Dφe−SE(J) (2.3)

in terms of the Euclidean action SE

SE =

∫
d4x

(
1

2

(
(∂tφ)2 + (∇φ)2

)
+
µ2

2
φ2 +

λ

4!
φ4 − Jφ

)
. (2.4)

Most of the field configurations have very high actions and don’t contribute to the integral
because e−SE is very small. We do importance sampling using a Metropolis algorithm, where the
field is sampled according to the distribution e−SE .

2.2 Renormalization

The propagator associated with an internal line in a Feynman diagram is D(p) = i/(p2 −m2 + iε)
at lowest order. When evaluating n-point correlation functions by differentiating the amplitude
Z[J ] (c.f. Ryder[R]), e.g. the 2-point function, one obtains a series of loop diagrams shown in fig.
1 (these are only composed of 1-particle-irreducible diagrams of first order).
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Fig. 1: Loop diagrams of the 2-pt. function

If the second diagram of this series gives a correction −iΣ to the propagator D(p), then the sum is

D(p) +D(p)(−iΣ)D(p) +D(p)(−iΣ)D(p)(−iΣ)D(p) + · · · = i

p2 − (m2 + Σ) + iε
(2.5)

by virtue of the geometric series. This leads to a redefinition of the mass, known as mass shift
m2
r = m2 + Σ. In our case, µ2 is m2, but m is the letter used throughout in literature. The

quadratic mass shift explains, why symmetry breaking is observed for negative µ2 < µ2
0 with

µ2
0 < 0 instead of µ2

0 = 0. We will focus on this fact in the following sections.
Similarly, when the 4-point corrections are calculated from second order diagrams like those in

fig. 2 for the s, t and u channel, the coupling constant receives a shift. The resulting renormalized
coupling λr is the physical one.

(a) 4-pt-loop, s channel (b) 4-pt-
loop, t
channel

(c) 4-pt-
loop, u
channel

Fig. 2: 4-point corrections, one loop

In the cutoff renormalization scheme a cutoff momentum Λ is introduced to display infinite
integrals. It is interpreted as a scale up to which the theory is valid. It is, however, not a physical
quantity and all physical quantities should not depend on it. On a lattice, such a cutoff is naturally
defined by the finite lattice spacing a. This is explained in figure 3: The field φ is equivalent to
a collection of anharmonic springs in spacetime, represented by the dots. The red wave can be
resolved, but the blue wave with a higher frequency would look the same. The red wave defines a
momentum cutoff which is proportional to 1/a.

Fig. 3: Finite lattice spacing
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2.3 Spontaneous symmetry breaking (SSB)

The Lagrangian of the φ4 theory is

L =
1

2
(∂φ)

2 − µ2

2
φ2 − λ

24
φ4, (2.6)

where λ and µ are arbitrary, unrenormalized parameters of the theory with no physical meaning.

For λ < 0, the potential would not be bound from below and the ground state indefinite. Thus the
case λ < 0 will not be considered in the following discussion.

For µ2, λ > 0, the potential is of the form shown in figure 4. The ground state is at φ = 0, thus has
a Z2-symmetry and the vacuum expectation value (vev) of the field is zero, although there may be
quantum fluctuations.

Now let µ2 < 0, λ > 0. The unrenormalized potential is exemplarily shown in figure 5. The state
at φ = 0 is unstable and there are two ground states with a vev 〈φ〉 6= 0.

Replacing the scalar field φ by a complex C2 field Φ and introducing a Yukawa interaction term
LYuk,int = gψ̄Φψ, with fermion fields ψ, the fermion and W,Z boson masses in the Standard Model
can be explained.

Back to scalar field theory. Even though the unrenormalized potential may have a minimum at
φ 6= 0, the mass shift can be large enough, such that the renormalized potential has one minimum
at φ = 0. In this case, no spontaneous symmetry breaking will occur.

Fig. 4: Unbroken symmetry Fig. 5: Spontaneously broken symmetry

For further discussion c.f Peskin/Schroeder (1995).[PS]

2.4 Effective Potential

The effective potential is introduced to describe theories with spontaneously broken symmetries in
the same manner as those without symmetry breaking. With knowledge of the effective potential
one can determine the renormalized mass and coupling constant as well as the field strength renor-
malization constant.
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To calculate the effective potential, bring in the external source J . Define U(φ) to be:

U(φ) = V (φ)− Jφ (2.7)

where J does not depend on φ. Now let 〈φ〉 ≡ 〈φ〉(J) be the expectation value in presence of the
external source, hence, by inverting, J ≡ J (〈φ〉). U(φ) has a minimum at 〈φ〉 and therefore

∂U

∂φ
(〈φ〉) = 0 =

∂V

∂φ
(〈φ〉)− J (〈φ〉) (2.8)

Since we are on the lattice, we measure only renormalized quantities. By plotting J (〈φ〉) versus
〈φ〉 one can obtain the effective (renormalized) potential by integrating:

Veff(φ) =

∫ φ

0

d〈φ〉J (〈φ〉) (2.9)

The effective potential for scalar field theory is given by

Veff(φ) =
m2
R

2
Z−1
φ φ2 +

λR
24
Z−2
φ φ4 (2.10)

with renormalized mass mR, renormalized coupling constant λR and field strength renormalization
constant Zφ. The form of Veff can be found e.g. in Ryder (1985)[R].
A typical example for the external source versus the expectation value and for the corresponding
effective potential versus φ is shown in figure 6 and 7 for unbroken (UBS) and in figure 8 and 9 for
spontaneously broken symmetry (SBS) respectively.

The field strength renormalization constant and the renormalized coupling can be extracted by
fitting a function of the form

f(〈φ〉) = f1〈φ〉+
f2

6
〈φ〉3 (2.11)

to J(〈φ〉), where f1 and f2 are fit parameters. Comparing with the derivative of equation 2.10, Zφ

is given by Zφ =
m2

R

f1 where mR is given by calculations of the 2-point correlator, and λR is given

by λR = f2Z
2
φ.

Fig. 6: J (〈φ〉) versus 〈φ〉 (UBS) Fig. 7: Veff(φ) versus φ (UBS)
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Fig. 8: J (〈φ〉) versus 〈φ〉 (SBS) Fig. 9: Veff(φ) versus φ (SBS)

A further discussion and additional plots are given in section 4.

3 Algorithm

We define a four-dimensional field with N4 lattice points. The lattice spacing is a. The derivatives
are chosen ∂µφ(x) = 1

a (φ(x+ aµ̂)− φ(x)) with µ̂ the unit vector in µ-direction. To be able to
differentiate the field at the boundaries, we impose periodic boundary conditions. The field sites
φ(x) are initialized to a constant, say zero.

The basic idea of our algorithm (following Metropolis et al.) is summarized as follows

1. At the lattice position i, do a random variation of φi to [φi − d, φi + d] for some parameter d

2. Calculate the change in the action ∆S

3. Accept the change with a probability of ρ = min(1, e−∆S)

This procedure applied to all N4 lattice sites is called a sweep. A suitable value for the variation
d can be found under the condition that the overall acceptance probability p in one sweep should
be approximately 80%. If p < 0.78, the variation is too large and d is lowered by a factor of 0.95.
If p > 0.82, d is raised by a factor of 1.05. This is repeated for a certain number g0 of sweeps. The
whole procedure of g0 sweeps can be understood as a “warming up” of the lattice. We observe that
d ≈ 0.3 results from this procedure in almost every case.

The correlation function (3.1) between timelike intervals is the quantity of interest.

C(t) =
∑
x

〈0|φ(t′ + t, x)φ(t′, x) |0〉 (3.1)

This notation refers to the canonical quantization formalism where φ is an operator. In our case,
we just sum over the products of field values at different time gaps t. Any t′ can be used for this
calculation and in fact we use all of them to calculate an average for C(t). Since the boundaries
are periodic, the longest time gap in the lattice is tN/a = N/2 if N is even, (N − 1)/2 if it’s odd.
C(tN + 1a) would be the same as C(tN − 1a) for even N (for odd N C(tN + 1a) = C(tN )). To
obtain a normalized correlation function we divide it by C(0). We expect the function to drop like
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e−mt, as is calculated e.g. in [PS], p.27. An example of C(t) is shown in fig. 10. The exponential
decay is confirmed and a fit gives a decay constant of 2.02. Since we used an N = 10 lattice, the
time gaps only range from 0 to 5.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

m=2.02

corr. fct
exp(-m*x)

Fig. 10: Correlation function for λ = 1 = µ2 = a, N = 10

4 Data analysis

Several Monte-Carlo-Metropolis simulations have been started with different sets of parameters and
different aims.

4.1 Mass calculation

Due to loop corrections for the propagator, shown to first order in section 2.2, the physical or
renormalized mass gets shifted. According to [HMP] the correlation function is expected to drop
like e−mrt with the renormalized mass mr of a particle described by the field. This implies

log
C(t)

C(t+ a)
= mra = meff (4.1)

mr, t are dimensionful quantities, while the effective mass is dimensionless. Actually (4.1) is the
way we determine meff. This method suffers from the problem that C(t) drops very fast. Dividing
two small numbers by each other and taking the logarithm produces high errors. Also these small
numbers sometimes fluctuate below zero (c.f. errorbars in fig. 10) and the calculation fails. Because
of this, C(0)/C(1a) is in most cases the only usable pair, especially when the masses are high.

After warming up the lattice, our program performs another certain number of sweeps and
calculates C(t) and meff after each. This gives a Markov chain of masses because each mass
depends on the previous field configuration. This can be nicely observed in a mass vs. number of
sweeps plot, where a continuous line can be drawn through the points. The autocorrelation has to
be considered in the standard deviation, which is explained in section 5.2.
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We are interested in meff depending on the input parameter µ2. Our program allows an auto-
mated repetition of the procedure described above for different µ2. An example is shown in fig. 11.
We are especially interested in the phenomenon of spontaneous symmetry breaking (about which
more later) which occurs for negative µ2. In fig. 11 we see a breakdown of the mass for a negative
µ2 = −0.1. The reason for this is, that the field develops a non-zero vacuum expectation value.
Every lattice site is highly correlated and eq. (3.1) gives large contributions to C(t) and results
in a function like C(t) = c + Ae−bt with an offset of c ≈ 0.9 and a corresponding small A. The
exponential decay can still be observed, but the method of dividing the function as in (4.1) fails
and gives almost zero numbers, which are unphysical and do not represent masses.

 0

 0.5

 1

 1.5

 2

 2.5

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

m
e

ff

µ
2

meff,λ=1

Fig. 11: Effective mass for different µ2. λ = 1, N = 10, a = 1

Plots like fig. (11) are suited to determine the critical point where the phase transition occurs
(in analogy to statistical mechanics one likes to speak of a broken and unbroken phase). Similar
plots are shown in fig. 12 for higher couplings λ.
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Fig. 12: Effective mass for different µ2. λ = 50(100), N = 10, a = 1

The critical points are at µ2
0 ≈ −3 for λ = 50 and µ2

0 ≈ −6.2 for λ = 100. This suggests a roughly
linear dependence of µ2

0 on λ. The masses on the other side of the critical point are supposed to
become higher with growing

∣∣µ2
∣∣ (c.f. [HMP]). It would be an interesting addition to investigate

them. One could either subtract the vacuum expectation value φ0 in the calculation of C(t), which
corresponds to expanding around the vev like φ(x) = φ0 +η(x) in perturbation theory, or one could
perform an exponential fit to the unchanged C(t) of the form c+Ae−mt. These features require an
extensive restructuring of our program as it is and are thus not implemented.

To conclude this section we want to focus on the development of the vacuum expectation value
of the field. The configuration of the field itself is not very descriptive. One can visualize a cross
section of the xy-plane for example, but since the lattice size in one dimension is quite small (about
10) it doesn’t look very smooth. Going to higher N significantly increases the computation time
(O(N4)!). The average field (=vev if J = 0) gives a much better insight to the internals of the field
and is shown in fig. 13.
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Fig. 13: Vacuum expectation value. The field is initialised to v.

The red line shows the field average for λ = µ2 = 1 when φ(x) is initialized to 0 (parameter v
in the legend). It fluctuates a little around 0. The green line has µ2 = −0.5 and lies within the
broken phase. As the sweeps go up, the vev does too until it reaches a stable point after ≈ 1000
sweeps. This is the warmup phase. In comparison, the blue line was initialised at v = 0.1 and
reaches the stable point earlier. The figure shows that g0 > 1000 is a good choice. When we start
the simulation with v = 0 several times, the stable point is reached equally often at the negative
vev. This is what “spontaneous” breaking means. Setting v positive is like tipping the ball in the
positive potential well. The choice has no influence on the mass. The fourth purple line shows that
the vev at a special choice of λ = 6, µ2 = −1 is about 0.8. The naive assumption would be a vev of√
−6µ2/λ = 1 which is only correct in zeroth-order perturbation theory without any mass shifts.

Here these shifts also lead to a shifted vev.

4.2 Effective potential

The effective potential and the dependence of the expectation value 〈φ〉 on the external source J
have been calculated for λ = 1 and λ = 100 for spontaneously broken and for unbroken symmetry
each. Figures 14 and 15 show plots for the dependence of J on 〈φ〉 (inverted) for λ = 1 and
µ2 = −0.03 and µ2 = −0.15 respectively. The symmetry is spontaneously broken for µ2 = −0.15
and remains unbroken for µ2 = −0.03, meaning that SSB occurs almost immediatly as µ2 < 0.
This is the consequance of a small mass shift due to a small coupling constant.

The corresponding effective potentials are given below in figures 16 and 17. Data points are omitted
due to a reason given at the end of this chapter.
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Fig. 14: J (〈φ〉) for λ = 1 with UBS
(µ2 = −0.03)

Fig. 15: J (〈φ〉) for λ = 1 with SBS
(µ2 = −0.15)

Fig. 16: Veff for λ = 1 with UBS
(µ2 = −0.03)

Fig. 17: Veff for λ = 1 with SBS
(µ2 = −0.15)

The situation changes for λ = 100. Figure 18 shows J (〈φ〉) for µ2 = −5.0. Even for such small µ2

no symmetry breaking occurs because of a large mass shift! The symmetry remains unbroken until
µ2 . −6.2 as predicted by calculations of the renormalized mass (see section 4.1). For µ2 = −6.5
the plot of J (〈φ〉) is given in figure 19. Again the corresponding effective potentials are given below
in figures 20 (UBS) and 21 (SBS).
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Fig. 18: J (〈φ〉) for λ = 100 with UBS
(µ2 = −5.0)

Fig. 19: J (〈φ〉) for λ = 100 with SBS
(µ2 = −6.5)

Fig. 20: Veff for λ = 100 with UBS
(µ2 = −5.0)

Fig. 21: Veff for λ = 100 with SBS
(µ2 = −6.5)

4.2.1 Errors of numerically calculated Veff

As mentioned before, data points have been omitted for the effective potentials. The reason is, that
we used the trapezoid rule for calculating the effective potential numerically, which is only valid
for small spacings between the data points. For µ2 < 0 we observed, that these spacings vary more
strongly than for µ2 > 0. Thus the error for the trapezoid rule becomes much larger. An example
for an effective potential with µ2 > 0 is given in section 2.4 in figure 7. The integration of the fitted
function for J (〈φ〉) and the numerically integrated J (〈φ〉) coincide well. Figures 22 and 23 show
the effective potentials for µ2 < 0 calculated with both methods. While for unbroken symmetry
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small deviations can be obeserved, the trapezoid rule fails totally if the symmetry is spontaneously
broken.

Fig. 22: Veff for λ = 1 with UBS
(µ2 = −0.03)

Fig. 23: Veff for λ = 100 with SBS
(µ2 = −6.5)

4.3 Renormalized coupling constant

As described in section 2.2, the physical coupling constant is shifted away from the coupling param-
eter λ in the Lagrangian as a consequence of renormalization. With use of the effective potential
or, more specific, the dependence of J on 〈φ〉, one is able to calculate the renormalized coupling
and the field strength renormalization constant as depicted in section 2.4. For µ2 = 1.0...1.64 and
λ = 10, tables 1, 2 and 3 list how mR, the fit parameters for the J (〈φ〉) fit and Zφ depend on µ2.

mR 2.122 2.140 2.167 2.185 2.201
∆mR 0.006 0.006 0.009 0.009 0.006
µ2 1.000 1.160 1.320 1.480 1.640

Table 1: mR vs. µ2

f1 ∆f1 f2 ∆f2 µ2

1.550 0.003 8.927 0.017 1.000
1.707 0.003 8.922 0.026 1.160
1.853 0.003 8.963 0.023 1.320
2.013 0.003 8.919 0.023 1.480
2.160 0.003 8.973 0.025 1.640

Table 2: Fitparameters vs. µ2
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Zφ 2.905 2.682 2.535 2.372 2.244
∆Zφ 0.017 0.017 0.020 0.019 0.012
µ2 1.000 1.160 1.320 1.480 1.640

Table 3: Zφ vs. µ2

The dependence of mR on µ2 is graphically shown in fig. 24 and the depencies of Zφ and λR on
mR in figs. 25, 26.

Fig. 24: mR vs. µ2 for λ = 10 Fig. 25: Zφ vs. mR for λ = 10

Fig. 26: λR vs. mR for λ = 10
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Substantial is the strong dependence of λR (Zφ) on mR. Unfortunately we have no other data
to compare our results with. A possible explanation for this behaviour is given by the following
argumentation: The shift of the coupling constant is due to loop corrections. These corrections
take place at energies below a defined cut-off energy (momentum) (c.f. section 2.2). The larger
the mass of the exchanged particle (scalar particle) the smaller is the phase space, i.e. the possible
momentum states for the process to take place. This has the consequence, that the shift of the
coupling constant becomes smaller.

4.4 Finite size effects

In this chapter we want to study the dependence of the results of our algorithm on the size of the
lattice. The spacing a is held constant while the total size N is varied. As an observable we choose
the effective mass and calculate it in a range of N = 5 up to N = 25 (fig. 27). As one can see, low
N produce high fluctuations. Below N = 5 calculations were impossible because C(1a) tends to go
negative just by fluctuating. With increasing N , the errorbars indicate an improved accuracy. N
is the crucial value for computing runtime – The last point in this plot took approx. 30 minutes.
This is why in most of our calculations we used N = 10 which has quite large errorbars, but gives
reasonable runtimes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26

m
e

ff

N

meff

Fig. 27: Finite size effects: Mass depending on N

5 Error analysis

5.1 Standard deviation

An unbiased estimator of the standard deviation of a sample xi, 1 = 1 . . . N is

σ =

√
1

N − 1

∑
i

(xi − x̄) (5.1)

where x̄ is an estimator of the mean.
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The standard deviation of the mean is smaller by a factor of 1/
√
N .

σmean =
σ√
N

(5.2)

5.2 Autocorrelation

To calculate the standard deviation of a series Xi of autocorrelated masses, we use the acf-function
of R to get the normalized autocorrelation function Γ(t) of the series. Then the normal standard
deviation (sd function) has to be multiplied by a factor of

√
2τint with the integrated correlation

time

τint =
1

2

∞∑
t=−∞

Γ(t) =
1

2
+

∞∑
t=1

Γ(t). (5.3)

Γ(−t) = Γ(t) is assumed.

6 Summary

Quantum field theory on a lattice is a useful application of MC methods and an important assistance
for continuum theory. φ4 theory shows to be a very deep topic, although it is the simplest of
field theories, especially because of the occurence of spontaneous symmetry breaking. Being the
Lagrangian of the Higgs field in the Standard Model, (1.1) is related to the very frontier of particle
physics research. Simulations like ours can be used to simulate whether the Higgs mechanism could
actually work (which was done in the paper [HMP]). Our simulation of course reaches lower goals
and is able to locate the critical value of spontaneous symmetry breaking. Effective masses can
be calculated in the unbroken phase, and, with extension suggestions made in 4.1, for the broken
phase. The effective potential is a efficient way to extract other quantities like renormalized coupling
constants and the field strength renormalization constant Zφ. Also it gives a nice visualization of
broken symmetry (“Mexican hat”).

The key issues we encountered during the programming are

� Computation time governed by N4

� Warming up the lattice needs > 1000 sweeps

� Mass/coupling shifts due to renormalization manifest themselves

� Low N give bad accuracy (finite size effects)

� Calculated masses fluctuate a lot (errorbars) and are autocorrelated

� Continuum limit a→ 0 can be extrapolated

A personal impression of the project for us is to see that the path integral formalism actually works
and is able to confirm the spontaneous symmetry breaking.
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