
Project in Computational Physics

PERCOLATION

Jan Hasenbusch and Matthias Wilhelm

17/03/2011

Winter semester 2010/11



Contents

1 Introduction 3

2 Basics of percolation theory 3
2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Finite size scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Algorithmic solutions 5
3.1 Hoshen-Kopelman labelling . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Microcanonical and canonical ensemble . . . . . . . . . . . . . . . . 6
3.3 Newman-Ziff algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Implementation 8
4.1 Random element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Basic programme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Computing observables . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Results 12

6 Conclusion 14

7 References 15

2



1 Introduction

The basic problem of percolation is very simple. On a large lattice of specific type
each site is independently either occupied, with probability p, or empty with prob-
ability 1− p. The occupied sites form clusters which populate the lattice. What is
the minimum probability pc such that a large cluster exists which spans the whole
lattice?

This problem was first investigated in the context of vulcanisation of rubber by
Paul Flory, who published the first percolation theory in 1941 [9]. There, a slightly
different version of percolation appears: assuming a bond between two sites exists
with probability p – what is the critical probability for a spanning cluster to exist,
now? This version is called bond percolation, whereas the former is called site
percolation. Subsequently combinations of both were examined, as well.

Since 1957 computer simulations play a crucial role in percolation theory [9].
Though many interesting quantities are known exactly today, simulations in many
cases provided the necessary intuition for determining them and most interesting
quantities are still only accessible through simulations altogether.

Percolation models can be used in a huge variety of different systems. Besides
actual percolation of fluids through rock, percolation theory was applied to describe
granular materials, composite materials, polymers and concrete. Further reaching
applications include resistor models, forest fires, epidemics, robustness of the Inter-
net, biological evolution and social influence [6].

To this end, a large number of different lattices is employed.
In this project, however, we focus on site percolation on square lattices in d

dimensions.

In section 2 we introduce the fundamental quantities of percolation theory and
give an introduction to finite size scaling. Section 3 presents different algorithmic
approaches. The implementation of our algorithm is described in section 4 and
section 5 contains the results we obtained with it. Our conclusion can be found in
section 6.

2 Basics of percolation theory

2.1 Basic definitions

In spite of its relative simpleness percolation exhibits a number of interesting prop-
erties. One of these is a second order phase transition.

For low occupation probabilities only small, separate clusters exist in the infinite
lattice. For large values of p a single infinite cluster exists that spans the whole
lattice. This is shown in figure 1. The value of p for which this infinite cluster
appears for the first time is called critical probability pc. It marks the position of
the phase transition.

The order parameter that is associated with the phase transition is called P∞(p).
It gives the probability for an occupied site to belong to the infinite cluster.

Another fundamental observable is nl(p), the number (per site) of clusters con-

3



Figure 1: Square lattices for different values of p (pc ≈ 0.59)

taining l sites. It is connected to P∞(p) by [8]:

P∞(p) = p−
∑
l

′
lnl(p) (1)

The prime signifies that the infinite cluster is omitted from the sum.
From the number of l-clusters the mean cluster size – or susceptibility – can be

calculated:

χ(p) =
∑
l

′ l2nl(p)
p

(2)

In the literature, its definition varies by an overall factor that is, however, unimpor-
tant for its critical behaviour. We work with the definition given in [7].

These quantities can also be derived by formally defining a free energy F as
generating function of a ghost field h [8]:

F (h) =
∑
l

′
nl exp(−hl) (3)

Its first h-derivative at h = 0, −
∑′

l lnl, is connected to P∞(p) and its second one,∑′
l l

2nl, to χ(p). This shows the relation between percolation and thermal physics.
If we define the radius of gyration Rl for a given l-cluster by:

R2
l =

1
2

l∑
i,j=1

|ri − rj |2

l2
, (4)

we also arrive at an expression for the correlation length ξ [9]:

ξ2 =
2
∑′

lR
2
l l

2nl∑′
l lnl

(5)

These quantities exhibit the following critical behaviour near pc [9]:

P∞ ∝ (p− pc)β (6)
χ ∝ |p− pc|−γ (7)
ξ ∝ |p− pc|−ν , (8)

which defines the critical exponents β, γ and ν.
Further critical exponents exist with respect to the behaviour of F , nl and Rl.

For a discussion of these and the hyperscaling relations between them we refer the
reader to [9].

4



2.2 Finite size scaling

With a finite computer it is impossible to simulate infinite lattices. Fortunately,
nature does not know infinite lattices either. Thus, instead of ruining the theory,
the effects of finite size and their understanding give us a further tool to describe
observation and make predictions (see [9] for an application to the exploration of oil
reservoirs).

In the following, we discuss the effects of finite sizes and sketch the theory of
finite size scaling.

In a finite cluster no infinite spanning cluster can exist. To account for this, a
finite lattice is said to have percolated if a cluster exist that connects its bound-
aries (in the case of free boundaries) or wraps once around it (periodic boundary
conditions).

Whether the linear dimension L of a finite lattice is relevant for an observable is
determined by the correlation length ξ. For ξ � L all observables are governed by
ξ [9]. For L� ξ they are governed by L. Because the correlation length diverges as
p→ pc finite size effects are always relevant in the vicinity of the phase transition.

If an observable X is expected to scale as |p− pc|−λ in the infinite lattice, finite
size scaling theory predicts it to obey the general scaling law [9]:

X(L, p) = (p− pc)−λX̃((p− pc)L1/ν) (9)

Here, X̃ is a scale-independent function (at least in the asymptotic limit).
In a finite setting the probability Π(p) that a given lattice percolates is no longer

a step function of p – rising from zero to one at pc – but varies smoothly. We can
define the average concentration pav at which a lattice percolates as [9]:

pav =
∫
p

(
dΠ
dp

)
dp (10)

Applying (9) to Π(p) then gives [9]:

|pc − pav| ∝ L−1/ν (11)

For practical purposes we use a different formulation of (9) for P∞ and χ [1, 10].
This yields:

P∞(L, p) = L−β/νP̃∞(L1/ν(p− pc)/pc) (12)

and
χ(L, p) = Lγ/νχ̃(L1/ν(p− pc)/pc) . (13)

3 Algorithmic solutions

To learn something about percolation one can simply generate configurations for
different values of p and analyse these. To do this efficiently has, however, been a
challenge which could only be mastered recently.

5



3.1 Hoshen-Kopelman labelling

An algorithm which was used for many years to investigate percolation configurations
is called Hoshen-Kopelman labelling [8].

Perhaps the simplest approach to the classification of clusters is to go through the
lattice sequentially and label each seemingly new cluster with consecutive numbers.
Figure 2 shows an example of this.

∗ ∗ ∗ ∗ 1 1 2 2
∗ ∗ ∗ ∗ 1 3 ? 2

∗ ∗ ∗ ∗ ∗ 4 ? ? ? ?

Figure 2: Illustration of Hoshen-Kopelman labelling [8]

The problem of this approach is obvious. Once we come to a site that merges
two previously separate clusters, a label conflict exist.

One way to solve this is to relabel all sites with the higher label. However, this
necessitates a vast amount of relabelling and is thus very inefficient.

An efficient solution was found by J. Hoshen and R. Kopelman in 1976 [3]. They
gave each site label m another index n(m). As long as m is a “good” label, n(m) is
m. But once the cluster labelled with m turns out to be a sub-cluster of a cluster
labelled with k < m, n(m) is set to k. By traversing the resulting tree structure up
to the root label the “good” label for each cluster site can be found.

With Hoshen-Kopelman labelling a given configuration can be analysed in time
O(N), where N is the number of sites in the lattice [3]. This is already optimal, as
one cannot check the status of N sites in less than N operations [6].

3.2 Microcanonical and canonical ensemble

To study finite size effects and the phase transition the observables in question have
to be determined for a large range of p – if not for the whole interval [0, 1] at least
for a continuous neighbourhood of pc. This task can be simplified considerably by
switching from the canonical to the microcanonical ensemble.

So far we have only considered a setting where each site is occupied with prob-
ability p and empty with probability 1− p. The resulting number of occupied sites
fluctuates about the mean value pN . In the language of thermal physics this setting
is called “canonical” – at least if we replace “energy” with “occupied sites”.

It is equally possible to study the microcanonical setting – a lattice in which
exactly n sites are occupied. If Q(p) is an observable in the canonical setting we
denote its corresponding observable in the microcanonical setting by Qn.

The desired observable Q(p) can be obtained from Qn by a convolution with the
binomial distribution [5]:

Q(p) =
N∑
n=0

(
N

n

)
pn(1− p)N−nQn (14)

The main advantage of this is that – though there are uncountable many possible
values of p – the number of possible values of n is only N + 1. Using the micro-
canonical ensemble it is thus possible to determine Q(p) for all p at once – and this
by measuring only N + 1 values.

6



3.3 Newman-Ziff algorithm

In 2000 M. E. J. Newman and R. M. Ziff published an algorithm which calculates
observables for all p at once in time O(N) [5].

Their algorithm is based on the use of the microcanonical ensemble.
The crucial part, however, is that it does not analyse given configurations but

analyses configurations while generating them. The core idea can be sketched as
follows:

1. Generate an empty lattice.

2. Occupy one randomly chosen previously unoccupied site.

3. Amalgamate clusters that are merged by the newly occupied site.

4. Analyse the changes in the observables due to the newly occupied site.

5. Repeat steps 2 to 4 until all sites are occupied.

By means of a suitable design the changes in the lattice and in the observables due
to adding one occupied site can be kept small and managed in time O(1). In this
way, the dependence on N is restricted to the number of steps it takes to occupy
the whole lattice and an overall dependence of O(N) is achieved.

The suitable design mentioned above is the use of a tree structure. Each occupied
site is considered a node and a pointer is assigned to it. If a new site is occupied in
the lattice, essentially three different situations can occur:

1. None of the neighbours of the new site is occupied. In this case the newly
occupied site becomes a cluster of its own and its own root node. Its pointer
points to itself.

2. There is exactly one cluster neighbouring the newly occupied site. In this case
the newly occupied site becomes a part of this cluster. The pointer of the
newly occupied site points to the root node of the neighbouring cluster.

3. There is more than one cluster neighbouring the newly occupied site. These
clusters then have to be amalgamated. To this end, one of the root nodes of
the neighbouring clusters in picked and the pointers of the other root nodes –
as well as that of the newly occupied site – are pointed to it.

Thus, trees grow that store one cluster each – in fact quite similarly to the situation
in the Hoshen-Kopelman labelling.

So far, however, the number of nodes that have to be traversed to find the root
node grows significantly. To limit this, two refinements are applied:

Firstly, the root node of an amalgamated cluster is not picked randomly from
those of the neighbouring clusters but chosen to be that of the biggest cluster. For
this purpose, the size of each cluster is stored at its root node and updated upon
amalgamation.

Secondly, each time the tree is traversed to find the root node belonging to a site,
the path that is taken is compressed. This means that the pointers of all nodes that
are passed on the way to the root node are pointing to the root node afterwards.

7



The resulting algorithm is also called “weighted union find with path compres-
sion” – “weighted” and “union” as trees are amalgamated and the smaller one be-
comes a sub-tree of the bigger one – “find with path compression” as the path to
the root node is compressed upon finding it.

4 Implementation

For implementing the Newman-Ziff algorithm, we used the programming language
C++.

4.1 Random element

The only place where a random element enters the algorithm is through determining
the order in which the sites are occupied.

To this end, a permutation of the addresses of the N sites is needed. It can be
obtained by a relatively simple algorithm:

1. Create an array A with N entries. Set A[i] = i for all i = 0 . . . N − 1.

2. Set j = 1.

3. Create a random number k uniformly distributed between j and N − 1.

4. Swap A[j] and A[k].

5. Increase j by 1.

6. Repeat steps 3 to 5 until j = N − 1

For the percolation problem a study of different pseudo-random number gener-
ators (PRNGs) was carried out by M. J. Lee [4].

Although we do not expect to reach the precision where differences between
research-quality PRNGs matter, we chose to work with the one Lee had identified
to be the most reliable. It is the MT19937 algorithm – a version of the Mersenne
twister generator developed by Matsumoto and Nishimura.

Concretely, we are using the implementation provided by the GNU Scientific Li-
brary (GSL). This library also provides the function gsl rng uniform int to create
uniformly distributed integer random numbers between 0 and N − j − 1 from this
PRNG. Adding j to these supplies the random numbers needed for the algorithm
above.

4.2 Basic programme

We developed the core of our programme according to the description which Newman
and Ziff give for their algorithm in [5].

Additionally, these authors published a much more detailed description in [6] –
also including the C code of their core programme. This paper was, however, not
known to us until one week before the submission date of this report. Hence, our
programme was developed independently of it.

We designed our programme completely independent of the dimension d of the
lattice. The desired dimension and the linear extension L of the lattice can be chosen

8



upon initialising the programme – determining the number of sites in the lattice to
be N = Ld.

The main constituent of the programme is an array of integers of length N which
we called Lattice. For occupied sites it stores the address of a node of the cluster
this site belongs to. For empty sites it contains the marker N.

Starting with the address of an occupied site and iterating the command root
= Lattice[root] enables us to determine the address of the root node of each
occupied site.

In a second array of integers of length N – called Clustersize – we store the
sizes of a cluster at the address of its root node.

After initialising these and several other arrays and variables, the order in which
the sites are filled is determined according to the directive described in section 4.1.
Subsequently, the main loop fills these site by site:

In the first place, the addresses of the sites neighbouring the newly occupied
site are determined and written into an array. This is the only step where the
exact geometry of the lattice enters. Here, the periodic boundary conditions are
implemented, and only a small change in the executing function would allow us to
generate lattices of a completely different type.

From the addresses of the neighbouring sites the addresses of the roots of the
neighbouring clusters are determined and written into an array as well.

If there is no neighbouring cluster, the address of the newly occupied site (new-
position) is stored at Lattice[newposition] and Clustersize[newposition] is
set to 1.

If there are neighbouring clusters, Lattice[newposition] is set to the address of
the root of the biggest neighbouring cluster and the size of the biggest neighbouring
cluster is increased by one. Furthermore, the size of the biggest neighbouring cluster
is increased by the sizes of all other neighbouring clusters, their sizes are set to 0
and the entries of their roots in Lattice are set to the address of the root of the
biggest neighbouring cluster.

Additionally, all quantities corresponding to observables are updated and the
paths of the occupied neighbouring sites to the root node are compressed.

4.3 Computing observables

In the following, we describe how the computation of the different observables was
incorporated into the core programme.

In order to determine the step in which the system percolates for the first time,
we use the method described in [5]. To each occupied site we assign a vector that
points to the root node of its cluster.

Usually the components of the difference vector of these vectors are 0 or ±1 for
neighbouring sites. If, however, the cluster has just percolated, the difference vector
points (at least) once around the cluster and (at least) one of its components is
considerably larger.

We implemented the vectors by an array of arrays of integers of length (N, d).
Every time a path is compressed, these vectors have to be compressed as well.

After each amalgamation we compress the paths of the neighbouring sites and
thus update the vectors corresponding to them. We then check the differences

9



between the vector at the newly occupied site and each occupied neighbouring site
for components with an absolute value larger then one.

An illustration of this is shown in figure 3.

Figure 3: Detecting percolation

Although we determine the step in which the system percolates in each direction
separately – and could thus calculate wrapping probabilities as done in [5], we restrict
ourselves to calculating pav. Taking the minimum of the steps in which percolation
appeared in each direction and dividing it by N gives us an estimate of it.

In order to obtain a reliable value we average pav and all other observable over
k runs and output the result. To estimate its error we do this g times.

The final estimate for pav is then given by the mean of the g values and its error
can be estimated by the standard deviation of the g values divided by

√
g.

In order to determine P∞,n we keep track of the size of the biggest cluster in
each step. If the system has not yet percolated, P∞,n is zero. If it has percolated,
P∞,n is given by the size of the biggest cluster divided by n. Although you can think
of cases where the spanning cluster is not the biggest one, these cases are extremely
improbable. So, statistically, the assumption we made is fully justified.

To determine χn we keep track of the sum of the squared sizes of all clusters. For
this purpose we use a long long integer. χn is given by this sum – if the system
has percolated minus the size of the biggest cluster – divided by n.

Furthermore, we wrote an extension of our programme to determine nl,n. Im-
plemented as N arrays of length N + 1, the memory necessary for these is enormous
even for small values of N . But, fortunately, most of the entries are zero. This
allowed us to make effective use of the dynamical data structure of maps. At each
step we copy the map of the previously step, and increase and decrease the sizes of
the counters according to the amalgamations.

4.4 Performance

However, most of the time we did not use the extension for the calculation of nl,n.
The reason for this is that you cannot seriously expect to be able to calculate O(N)
variables in time O(N).

Figure 4 shows a logarithmic plot of the time necessary for one run for several
different N without the extension.

10



Figure 4: Runtime for different lattice sizes

We fitted the behaviour O(Nα) and obtained α = 1.052 ± 0.017. This devi-
ates from the desired behaviour. However, according to [6] these deviations can
be expected because of inaccuracies in the hardware and are not due to the actual
algorithm.

Most of our data was taken with k = 10, 000 and g = 10 resulting in 100, 000
runs per data point.

Our algorithm uses the data type integer, which contains numbers up to 231−1
in the implementation of the GNU Compiler Collection (GCC). This limits N to
2, 147, 483, 647.

However, the real limit is given by the computation time that is available to us.
With a reasonably new computer the computation of one run of a 1, 024 × 1, 024
lattice took 0.89 s – which adds up to more than a day for the desired statistics.

In [5] Newman and Ziff used lattices with N only up to 65,536 but 3× 108 runs
arguing that a good statistic is much more important for high precision results than
lattice size.

A measurement of the runtime with the extension yielded α = 1.87± 0.04.

4.5 Convolution

A convolution with the binomial distribution has to be applied to obtain P∞(p) and
χ(p) from P∞,n and χn.

We implemented the binomial distribution taking care to multiply the occur-
ring large and small numbers alternately in order to avoid overflows. However, the
computation time needed for the resulting convolutions grew rapidly with growing
N .

Therefore, we approximated the binomial distribution by an exponential distri-
bution for N > 10, 000.

Using the same strategy as for pav we applied the convolutions to the g different
outputs for P∞,n and χn separately and determined P∞(p), χ(p) and their errors
from the mean values and standard deviations of the results.

11



To estimate the error due to this approximation we convoluted P∞,n with both
distributions for a lattice with N = 8, 000. The maximal deviation was 3× 10−5,
which is considerably less than the maximal statistic error of 4× 10−4 that occurred
at the same value of p. For bigger values of N the deviation becomes even less.
Hence, we consider the approximation to be justified in our case.

A more efficient approach for the calculation of the binomial distribution was
published by Newman and Ziff in [6]. In this more recent publication they argue
that the approximation by an exponential distribution is no longer justified at their
desired degree of precision.

5 Results

In total, we took data for d = 2, 3, 4 and 6.
From the values of pav we determined the critical probability pc and the critical

exponent ν according to (11). Figure 5 shows the resulting plot for two dimensions.

Figure 5: Determination of the critical probability pc and the critical exponent ν in
two dimensions

To determine the critical exponents β and γ we plotted Lβ/νP∞(L, p) resp.
L−γ/νχ(L, p) versus L1/ν |p − pc|/pc to find the scaling functions in (12) and (13).
We started with the literature values for β and γ and then varied them until the
data points for the the different values of L laid on a single curve (compare [1]).

The resulting curves for three resp. two dimensions can be found in figures 6
and 7.

The criterion of overlapping was however not unambiguous and we estimated the
errors of the resulting values for β and γ via the range of values for which the data
points overlapped reasonably well.

Furthermore, we varied ν to obtain better values for it than could by obtained
via pav. This was proposed in [1] and was necessary in three and six dimensions.

Our results for pc, ν, β and γ, as well as the corresponding literature values, are
shown in table 5.

12



Figure 6: Determination of the critical exponent β for d = 3 via finite size scaling
of P∞

Figure 7: Finite size scaling of the susceptibility χ for d = 2

13



Our results Other authors
2D pc 0.592737(34) 0.5927621(13)[5]

ν 1.334(15) 4/3
β 0.125(2) 5/36 = 0.1389
γ 2.41(2) 43/18 = 2.389

3D pc 0.31165(6) 0.311608[8]

ν 0.85(3)? 0.88
β 0.387(2) 0.41
γ 1.745(5) 1.769

4D pc 0.19693(3) 0.196885[8]

ν 0.603(14) 0.68
β 1.19(2) 0.64
γ 0.64(2) 1.44

6D pc 0.1089(2) 0.109018[8]

ν 0.5(1)? 0.5
β 1.05(10) 1
γ 1.35(5) 1

Table 1: Results and literature values. ν-values marked with ? were derived from
P∞ and literature values are taken from [9] if not stated otherwise.

The values we obtained for pc are very good and match the literature values
within one or two standard deviations.

For the critical exponents, however, the quality of our results varies. This is due
to the fact that the scaling laws are only valid in the asymptotic limit of L → ∞.
For finite L systematic deviations from perfect data overlapping occur, which were
clearly visible in some of our plots. These can lead to systematic offsets in the “best-
fit” values [1]. With growing d our data becomes increasingly vulnerable to these
effects. For example, the largest value for L we could calculate in six dimensions
was 10 – this is far less than infinity.

Finally, we measured nl,n. Figure 8 contains the result for a 12 × 12 lattices
averaged over 1,000 runs. Each column contains the values for a fixed l and each
row those for a fixed n. For better visibility we have multiplied nl,n by Nl/n.

The fractal nature of the system at probabilities close to pc can be seen very well.
There, clusters of all sizes exist, which is exactly the prediction of scale invariance.

6 Conclusion

Albeit founded on simple assumptions percolation exhibits very interesting proper-
ties and a lot of interesting applications.

Only recently M. E. J. Newman and R. M. Ziff published an algorithm that is
able to calculate observables for all probabilities p at once in time depending linearly
on the lattice size.

With a programme based on this algorithm, we investigated site percolation on
the square lattice in two, three, four and six dimensions. We were able to determine
the critical probability pc with an accuracy of up to 6× 10−5, which we consider to
be astonishingly precise for a project of this scope. Furthermore, we determined the

14



 40

 80

 120

 40  80  120

S
te

p
 n

Clustersize n_{l,n} * (Nl/n)

"nnl_out_l12_k1000.txt" matrix

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 8: nl,n for a two-dimensional lattice with L = 12

critical exponents ν, β and γ. Here, the limits of the computation power available
to us became apparent.

However, the available computation time is the only factor limiting the accuracy.
And making only small changes it would be possible to apply the programme to the
whole range of different lattice types.

7 References

[1] K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics,
An Introduction. Springer, Berlin, second corrected edition, 1992.

[2] G. Grimmett. Percolation. Number 321 in Grundl. Math. Wissen. Springer-
Verlag, New York, second edition, 1999.

[3] J. Hoshen and R. Kopelman. Percolation and cluster distribution. I. Cluster
multiple labeling technique and critical concentration algorithm. Phys. Rev. B,
14(8):3438–3445, October 1976.

[4] M. J. Lee. Pseudo-random-number generators and the square site percolation
threshold. Phys. Rev. E, 78(3):031131, September 2008.

[5] M. E. J. Newman and R. M. Ziff. Efficient monte carlo algorithm and high-
precision results for percolation. Phys. Rev. Lett., 85(19):4104–4107, November
2000.

[6] M. E. J. Newman and R. M. Ziff. Fast monte carlo algorithm for site or bond
percolation. Phys. Rev. E, 64(1):016706, June 2001.

[7] K. Ottnad, M. Ronniger, S. Schneider, S. Tölle, and C. Urbach. Projects for
Computational Physics, WS 2010/2011.

[8] D. Stauffer. Scaling Properties, Fractals, and the Renormalisation Group Ap-
proach to Percolation. ArXiv e-prints, April 2007.

15



[9] D. Stauffer and A. Aharony. Introduction to percolation theory. Taylor &
Francis, London, 2nd edition, 1992.

[10] A. Sur, J. L. Lebowitz, J. Marro, M. H. Kalos, and S. Kirkpatrick. Monte
Carlo studies of percolation phenomena for a simple cubic lattice. Journal of
Statistical Physics, 15:345–353, November 1976.

16


	Introduction
	Basics of percolation theory
	Basic definitions
	Finite size scaling

	Algorithmic solutions
	Hoshen-Kopelman labelling
	Microcanonical and canonical ensemble
	Newman-Ziff algorithm

	Implementation
	Random element
	Basic programme
	Computing observables
	Performance
	Convolution

	Results
	Conclusion
	References

