
Fractal Growth
Computational Physics

Benedikt Sauer, Alexander Schroer

March 2011

1 Introduction

In 1981, Witten and Sander discovered that complex
dendritic structures could be created by having ‘par-
ticles’ perform a random walk on a lattice and stick
together on contact (fig. 1). This can be considered a
rather surprising result, since without any preferred di-
rection in the motion of particles one would naturally
expect to end up with some sort of compact ‘blob’.
In fact, structures grown according to this or a sim-
ilar method turn out to be natural fractals, i.e. they
exhibit a certain scaling behaviour within an appro-
priate range. The result is all the more remarkable,
since Witten and Sander modelled it on natural phe-
nomena – the random walk corresponding to Brownian
motion and the sticky particles representing some ad-
hesive molecules or sedimenting colloids.

The prospect that the formation of structures which
had up to then been believed to be dominated by com-
plicated interactions could be reduced to such easy
principles together with the connection to the then just
emerging theory of fractal geometry sparked a remark-
able interest and was the basis for many follow-up pub-
lications.

Focussing on two particular growth models devel-
oped by P. Meakin using the results of Witten and
Sander and M. Eden, we give a brief introduction to
the basics of fractal growth and present the current sta-
tus of a universal toolkit capable of simulating discrete
growth processes in a very general way. It is applied
to check some earlier heuristic results.

Further Reading Since this text is composed in a review-
like fashion and most of the information presented is consid-
ered to be well-known today, we will give hints for further
reading at the end of each section instead of cluttering the
text with citations.

As for Witten and Sander’s original publication and

Meakin’s enhancements, refer to [1] and [3].

2 Some Mathematics

2.1 Why talk of fractal dimensionality?

A possible description of geometrical objects is their
treatment as subsets of Rn, e.g. for three-dimensional

space consider a line, a square and a cube of length,
area and volume (all of which we will refer to as gener-
alized volumes hereafter) 1 respectively. It is straight-

forward to represent the line by [0, 1] whereas [0, 1]
2

and [0, 1]
3

do nicely for square and cube – intuitively,
the volumes work out just as expected. One would now
of course like to assign a volume to all possible sets and
can in fact do so for quite a lot – though not for all.
This idea is extensively treated in measure theory.

However, while volume is an important aspect to
classify geometric objects we would also like to in-
troduce some notion of dimensionality. Clearly, line,
square and cube should be of dimension 1, 2 and 3.
For our example this can easily be achieved (up to the
boundary) by resorting to topology and basically iden-
tify a set with a manifold which is locally equivalent
to a vector space Rm, where m < n, and call m the
dimension of the set. Manifolds, while having a great
deal of interesting properties, are hardly a typical ex-
ample of arbitrary subsets of Rn, though.

A more general approach, which works for any topo-
logical (sub-)space and thus trivially for any open sub-
set of Rn, is given by the Lebesgue covering dimension:
If always some points of the set are contained in at least
n+ 1 elements of an arbitrarily fine open cover, the set
is of dimension n.

There is a bunch of other (non-equivalent) ap-
proaches to assign sets an integer which is called di-
mension and coincides with what one would expect for
our examples and other ‘everyday objects’. However,
at some point, quite another issue arises. As an ex-
ample, consider the Koch curve (fig. 2), which starting
with the interval [0, 1] ⊂ R2 can be constructed as fol-
lows:

• divide the interval into three parts of equal length,

• replace the middle part by two parts of the same
length which together with the removed part form
an equilateral triangle,

• repeat these steps for each of the smaller parts.

The catch is this – what dimension do you want
to assign to this set? It should probably be one di-
mensional. After all it has been constructed from

1

Figure 1: A typical dendritic structure grown similar to the original model of Witten and Sander (text). Colour-
coded is the age of each particle. The cluster consists of about 60,000 particles in total.

lines. But then again, its length is infinite (pre-
cisely limn→∞

(
4
3

)n
) whilst its extent is finite. Surely,

such an object should cover some finite area. Unfortu-
nately, the Koch curve being two-dimensional is clearly
ruled out by our topological definition. In fact, the
topological dimension of the Koch curve can easily be
verified to be 1, which seems somewhat unfitting.

The Koch curve is just an example of many sets
which can be defined using a so-called iterated function
system (IFS): Given a set of affine functions which are
contractive on the average, the set of points which is
invariant under the action of the functions has simil-
iar properties as the Koch curve. Another famous set
which can be constructed by an IFS is the Sierpinski
triangle (fig. 3).

Alternatively, consider an infinite random walk in
two dimensions. The resulting path is one dimensional
by construction, but since every point in space has a fi-
nite probability of being reached, after an infinite num-
ber of steps, the whole space should be covered. So is
the path one- or two-dimensional?

It turns out that it is a fruitful idea to resort the ob-
vious, though unintuitive solution: define fractional di-
mensions. By constructions which will be discussed in
a second, one can assign approximately the dimensions
1.26, 1.58, and 1.33 to the Koch curve, the Sierpinski
triangle and the random walk respectively. They all are
embedded in two-dimensional space, so their dimension
has to be less than or equal to 2, and their topological
dimension is 1, which serves as a lower boundary.

Structures of non-integer dimension are called frac-
tals.

2.2 The fractal (Hausdorff) Dimension

One can put these observations on a firm mathematical
footing by introducing the outer Hausdorff measure

Hd
ε (S) = inf

S⊂
⋃∞

i=1 Ui

diam(Ui)<ε

∞∑
i=1

diam(Ui)
d

and define the Hausdorff dimension for a measurable
set S as

dH = sup{d ∈ R+
0 | Hd(S) =∞}.

While this looks rather intimidating at first sight, it
boils down to the same idea which was behind the cov-
ering dimension, although being much more versatile
and applicable to any set with a well-defined volume,
which includes some rather pathological cases. Again,
this is dealt with in greater detail in measure theory.

Fortunately, in well-behaved cases there is an easy
implication. Note that we will not define the pre-
cise meaning of ‘well-behaved’. In general, however,
fractals which can be constructed explicitly, e.g. by
an IFS, tend to be ‘well-behaved’. The implication
is this: Connected to the dimensionality of a set is a
certain scaling behaviour concerning the number N of
spheres of radius R covering the set, namely for R→ 0,
N ∝ R−dH . While this is just a reformulation of what
we have already had before (provided spheres are suited
as covering sets), writing it this way allows for further
modification to yield a very useful expression:

dH = − lim
R→0

logN

logR
. (1)

By this, you can easily confirm, that indeed, the di-
mension of the Koch curve is log 4

log 3 ≈ 1.26. The ex-
pected results for geometric primitives are also easily
recoverable.

2

This scaling behaviour can be viewed as an illustra-
tion for the connection between fractal dimensionality
and self-similarity. Self-similarity is a striking aspect of
fractals and describes the fact that viewed on different
scales, fractals look essentially the same. In the case of
IFS fractals this similarity is exact. But there are as
well true fractals with only approximate self-similarity,
the most famous example probably being the Mandel-
brot set.

2.3 Improper Fractals

Up to now he have only talked about sets the con-
struction of which involved some limiting procedure.
This is clearly not apt to describe natural phenomena
which are always limited and finite. Nevertheless, when
looking at the right scale, fractal characteristics may
emerge. In terms of the example of dendritic growth
discussed in the introduction, clearly it is neither use-
ful to study the structure at the atomic scale, nor at
a macroscopic one. But at a certain mesoscopic scale,
the dendritic structure exhibits a large amount of self-
similarity (fig. 4). Our immediate aim is therefore to
further generalize our notion of fractal dimensionality
to encompass these kinds of structures as well.

We can do so in a somewhat ad-hoc fashion: Again
consider the minimal number of spheres of radius R,
N(R), required to cover the structure. But now, in-
stead of taking the limit of a small radius, define the
fractal dimension d at the scale given by R as

d(R) = − logN(R)

logR
. (2)

Note that this is almost identical to eq. 1. The value
of d obtained by this concept is called box-counting di-
mension and it is not necessarily equal the Hausdorff
dimension. In fact, in most cases it is not – remember
that we are not talking about true fractals anymore.
d becomes a meaningful quantity if it does not change
(much) over the scales under consideration. This infor-
mation is usually extracted from log-log-plots (fig. 5).

There are also other ways to determine the fractal
dimension from scaling laws. In fact, one should rather
call them methods to find a[sic!] fractal dimension, be-
cause just as with box-counting and Hausdorff, equiva-
lences break down due to finite-size effects. Then again,
there are some scaling laws which give approximately
the right dimensionality (i.e. in accordance to other es-
tablished recipes) for no good reason at all.

Two methods which are often applied in Rn with
Lebesgue metric and which will be particularly suited
to our ends are

• Rgyr ∝ m1/dH ,

where Rgyr = 1
m

(∫
V

dnxρ (x) (x− x0)
2
) 1

2

is the

radius of gyration around the center of mass x0,
V the volume and m =

∫
V
ρ the mass and

• C(r) ∝ rD−d,

Figure 2: The Koch curve is a well-known example for
a fractal structure (dH = log 4

log 3
)

Figure 3: The Sierpinski triangle is another famous ex-
ample for a strictly self-similar fractal which can
be defined as the solution of an iterated function
system. Wikimedia Commons.

where C(r) = ρ ∗ ρ is the density-density correla-
tion (the convolution of the density with itself).

The density ρ(x) is usually defined as 1 if x belongs
to the fractal and 0 else.

Structures which exhibit a fractal-like scaling be-
haviour over certain ranges are common in nature.
Typical examples include coast lines, veins and cracks.

Further Reading The rough sketches of topology and

measure theory can be reviewed in any decent book on

advanced analysis. For a comprehensive introduction to

fractal geometry, have a look at [7]. Different methods to

measure the fractal dimension of finite structures can be

found e.g. in [2] and [1].

3 Models

3.1 The Meakin Model

The Meakin model comprises two aspects: diffusion
limited aggregation and number limited aggregation.
Both deal with particles performing a random walk
and sticking together on contact just like Witten and
Sander proposed. In the case of diffusion limited ag-
gregation (DLA), one follows the pattern

1. Create a single particle at the origin and call it the
‘cluster’ (seeding);

2. Create a new particle at a random position, uni-
formly chosen on the n-sphere with radius r =
rC + 10 particle diameters around the unweighted
center of the cluster. rC labels the ‘cluster ra-
dius’, which is defined as the minimum radius of
an n-sphere which completely contains the whole
cluster;

3

Figure 4: Self-similarity is a form a scale invariance.
The upper cluster consists of 10,000 particles,
whereas the lower one contains 100,000 particles.
Note that the larger cluster just appears to have
a slightly more detailed boundary. Actually, it
has grown much larger; the size of the individual
particles is unchanged.

Figure 5: Improper fractals exhibit fractal scaling be-
haviour only over a certain range. In this exam-
ple, the fractal is composed of two-dimensional
objects and has a finite size which induces differ-
ent scaling behaviours at large and small scales.

3. Let the new particle perform a random walk. It
becomes part of the cluster in the instant they
touch;

4. Go back to step 2.

Creating particles shortly beyond the cluster radius
simulates diffusion from infinite distance, simply be-
cause at some point, that boundary has to be crossed.
Outside this region, the influence of the internal struc-
ture of the cluster on the random walk trajectory is
assumed to be negligible. To speed things up, particles
have to be removed again if they wander to far from the
cluster. Usually, a distance of 2rC from the center of
the cluster is chosen as a border beyond which particles
are removed and a new one is created. This is discussed
in more detail in the section on the implementation.

One of Meakin’s most important results is that the
model can be maximally discretized without changing
its properties. Here, maximum discretization means to
perform the random walk on a lattice with a lattice
spacing equal to the particle diameter. Two particles
can be considered to be touching if they are located at
nearest-neighbour lattice sites. Moreover, the particu-
lar choice of a lattice does not have measurable effects
either. Therefore, all simulations can be performed on
n-dimensional cubic lattices, which obviously is a huge
advantage from the implementation point of view.

Meakin investigated the fractal dimension for em-
bedding dimensions D = 2 to 6, mainly via radius of
gyration and density-density-correlation, and came to
the conclusion that very roughly dH = 5

6D. On a qual-
itative level, the resulting structures are approximately
spherical and strongly dendritic, much like patterns of
ice on a window. They can be seen in fig. 4.

Number limited aggregation consists of the following
steps

1. Create a given number of particles on a lattice
with periodic boundary conditions

2. Particles which touch are joined to clusters

3. Particles which touch clusters are added to them

4. Cluster which touch are merged

5. Move all particles and clusters randomly

6. Go back to step 2.

Optionally, clusters have a certain probability not to
move which is proportional to the number of particles
they consist of, thereby simulating ‘mass’. This results
in net-like structures (fig. 6) with a fractal dimension
of about 1.5 in 2-dimensional embedding space. Again,
Meakin could not find discretization artifacts caused by
the lattice.

3.2 The Eden-Meakin Model

In contrast to the Meakin model discussed before, the
Eden-Meakin model is inspired by organic rather than

4

Figure 6: Number limited growth with 16,000 particles
on a 2-dimensional 400 x 400 lattice.

inorganic processes. In 1961, M. Eden investigated the
following growth model on a lattice:

1. Start with a single particle;

2. Add a particle at a random lattice site with a prob-
ability proportional to the number of its occupied
neighbours;

3. Go back to step 2.

Unsurprisingly, what forms very much looks like a cell
culture or a fungus. Eden asked the question: To what
extend do random effects influence the development
of biologic systems? Rephrased in a fancy way this is:
Why do monozygotic twins have different finger prints?
Eden’s approach was purely analytic (or combinatoric);
he did some simulations, though rather as a last resort
and without much enthusiasm. But then again, this
was in 1961. When Meakin build his model of adap-
tive growth on top of Eden’s model in 1991, he took
a purely numerical approach instead. The boundary
of Eden’s cell culture had already been discovered to
have a fractal dimension, but Meakin was interested
in something different: He introduced a scoring system
to determine, which cells (particles) are ‘important’ for
the whole cluster and remove the irrelevant ones. This
works as follows:

• Whenever a new particle is added, assign it an
initial score of 0 and a ‘parent’, which is one of its
neighbours (e.g. the one with the highest score or
a random choice)

• The new particle and all of its ancestors (forming
a unique chain back to the seed of the cluster) are
awarded a score ∆S = (1 + l)−η, where l is the
length of the chain and η ∈ R+ is a parameter

• Reduce the score of each particle in the cluster by
1
Nm

, Nm ∈ N, and remove particles of negative
score

Amazingly, a dendritic backbone of high-scored parti-
cles develops (fig. 7), which has a fractal dimension,

Figure 7: The Eden-Meakin model produces different
dendritic structures depending on the cut off-
score (colour-coded).

Figure 8: The adaptive nature of the Eden-Meakin
model can be seen, if two clusters are grown
with different parameter sets. If the parameter
sets are exchanged, the cluster sizes swap as well.
The total score increases monotonically. This
renders the cluster more passive towards changed
over time and can be interpreted as a memory.

the exact value of which depends on the cut-off score.
There are other properties, however, which might be
considered even more interesting.

First of all, the cluster only reaches a finite size.
This is conceivable, because the larger it becomes, the
more possibilities there are to add new particles and
the smaller is the score a new particle is initially as-
signed. Therefore, new particles will be removed before
they become parents to another particle themselves.
Meakin gives a crude but easy estimate about the final
size depending on η and Nm in his publication.

Secondly, the model is adaptive. The meaning of
this can most easily be demonstrated by an example.
Fig. 8 shows the number of particles in two clusters
grown with different parameters. At the time marked
by the vertical bar, the parameter sets are swapped.
Soon after, the cluster sizes have swapped as well, thus
adapting to the new conditions. This stands in clear
contrast to the strictly irreversible growth models dis-
cussed so far.

5

Third, the cluster has a memory. It can also be seen
from fig. 8 that the total score of the clusters keeps
on growing all the time. Because most of it is allotted
to the backbone, it takes an increasingly large number
of steps to remove a particle from it once conditions
change. Another way to say this is that as parts of
the cluster become older, they become less adaptive as
well.

We can therefore safely state that the Eden-Meakin
model has not only been inspired organically but also
exhibits behaviour commonly attributed to living enti-
ties.

Further Reading Meakin’s inorganic models are pre-

sented in [3] and [4]. The original growth model suggested

by M. Eden in 1961 is [5]. Meakin’s modifications are cov-

ered in [6].

4 trivial – a fractal growth toolkit

In our implementation of the above models we focussed
on the following design goals, using object-oriented
techniques:

Performance We have to make multiple runs to get
sufficient statistics, so it is important that the pro-
grams generate large clusters in short times.

Genericness Because the models we are implement-
ing are very similar it would be nice from a pro-
grammer’s point of view to have one basic imple-
mentation with pluggable components. Also we
wanted to implement every model for every possi-
ble (metric) topology (dimension, boundary con-
ditions, etc.) exactly once.

To unify both goals (which are actually quite contrary)
we heavily relied on C++ templates. With a decent
compiler (we used the current G++, version 4.5.2) this
gives us the performance of hand-written C or C++
code (which we tried out first), while remaining very
versatile. The library is still under development and we
are going to implement some major changes described
in the last section in the near future to make it even
more useful.

In its current state the toolkit allows to imple-
ment the basic models described before in an arbi-
trary number of dimensions with 2 and 3-dimensional
(anaglyphic) real-time visualization, extraction of sta-
tistical information during the growth process, and
drawing of single images of 2-dimensional clusters. One
can also plug in arbitrary random number generators,
where in our calculations we always used the Mersenne
Twister (MT 19937, see [8]). Number limited growth
calculation in higher dimensions than 2 is not men-
tioned in any of the papers cited but is also possible
with trivial.

The toolkit also enabled us to experiment with dif-
ferent setups, detailed in the last part of this section,
which increases its practical use.

4.1 Details on the implementation

A typical trivial-program currently looks as follows:

typedef meakin :: sticky_particle <position <3>>
particle_type;

typedef meakin :: static_cluster <particle_type >
cluster_type;

typedef meakin :: diffusion_limited_updater <
particle_type , cluster_type > updater_type;

typedef world <particle_type , cluster_type ,
updater_type > world_type;

gl_visitor <world_type > visitor;
world_type w;

for (int n = 0; n < 1e6; ++n)
{

w.step();
if (n % 100 == 0)

w.accept(visitor);
}

This implements diffusion limited growth of a single
static cluster in 3 dimensions which is visualised using
OpenGL every hundredth step and terminates after the
millionth.

As one can see from this, there are four major build-
ing blocks in our program:

1. The world Template

2. The Particle type

3. The Cluster type

4. The Updater type

Additionally there is the position type that completely
defines our metric topology and is in this case just a 3-
dimensional vector, and the visitor interface that allows
us to get the current state of the world (here only to
provide some visualisation, in actual programs maybe
for statistics or loading and saving states).

The position type can be used to implement different
kinds of lattices. Currently we have a simple position
type for ‘infinite’ lattices that is used in the example
above, and a periodic_position type, which imple-
ments periodic boundary conditions.

In the following we’ll look into the concepts of the
basic building blocks and describe some of their pro-
vided implementations.

4.1.1 The world Template

This template class is the main interface to the
toolkit. It has four template parameters, the basic
Particle type it should use, the type of Clusters
that get created when particles merge, and the
Updater type, which handles creation and destruc-
tion of objects in each step. Additionally the type
of the RandomNumberGenerator, which defaults to a
Mersenne Twister in our case, is parametrised, which
allows us to use different (i.e. faster) generators if nec-
essary.

One can interact with objects of this class by calling
the step-method, which calculates a complete time-
step of the simulation, and using a Visitor interface.
We use the latter to draw the current state of clusters
and particles and to calculate statistics on them.

6

The step-method works as follows:

1. Update the particles and clusters using the pro-
vided Updater

2. Let one particle interact with each other and each
cluster and see if they are going to be merged

If there are particles to be merged with the cur-
rent one, merge them into a cluster (or create
a new one), and remove them from world

Else move the particle in a random direction

3. Repeat the same for every particle

4. Repeat the same for every cluster-cluster combi-
nation

In this part we have only included some small opti-
misations to keep the code generic and instead relied
on the compilers optimisation capabilities (for exam-
ple removal of empty function calls if interact does
nothing, and removal of empty loops).

4.1.2 The Particle

The particles are the most basic objects in our simula-
tions. In the current version they consist merely of po-
sition information and for the Eden model of the rating
of the particle. There is also a prototype of a Meakin
implementation featuring Coulomb interaction, where
the particles also carry charge information.

We would like to remove these objects as they are
now soon because of limitations described in section
4.3.

4.1.3 The Cluster

Clusters are specialized containers of particles. To the
outside they provide position and bounding informa-
tion, which in the current implementation is always
spherical. They can interact with each other and with
particles, providing merging and movement informa-
tion and also can be moved by themselves, where the
merging is implemented by adding every particle of the
other cluster one by one.

For the Meakin model our implementation is de-
signed to implement the following methods to be at
most of amortised constant runtime, respectively (for
iterations) linear runtime:

Iterating over contained particles This is needed for
fast interactions of clusters with other clusters and
for statistic calculations

Position-based lookup This is also needed for cluster-
cluster interactions and additionally for cluster-
particle interactions, which have to check if there
is a particle at a given position

Adding a particle Because the purpose of our clusters
is to grow we obviously want it to grow fast

The first two points are contrary to each other. The
first one suggests using a linear iterable container where
particles carry their own position information, but that
would result in a linear runtime for position-based
lookup. On the other hand, the second point suggests
using a position-indexed random access container with
a special empty-entry, but that would result in a more-
than-linear runtime for an iteration over all particles.

We thus concluded that we had to implement a
multi-indexed container, effectively implementing both
variants. The additional amount of memory required
by the linear container is of no concern in this ap-
proach, because it grows linearly while the random-
access container grows at least quadratically, depend-
ing on the dimensionality.

Because we did not want to limit the size of the
cluster in any way beforehand, we implemented the
linear container as an std::vector and the random-
access container as an exponentially growing hyper-
cube (see hyper_cube.hpp) with an overloaded index-
operator to allow easy position-based lookups. To
model an empty cell in this local lattice we used the
Boost.Optional library[9] and just left all empty cells
uninitialised. A growth is initiated whenever a par-
ticle is to be added outside of this hypercube and is
done by creating a new hypercube with two times the
edge length of the previous one and then copying the
old cube into the new one. This could be further opti-
mised by using the linear container to fill the new cube
and will be done in a future version.

We further optimised the has_particle_at-method
by recalculating a bounding sphere in every addition of
a particle that lies outside of the current sphere. Also,
whenever the hypercube has to be resized it will grow
around the center of this bounding sphere to fill it as
dense as possible. In has_particle_at the bounding
sphere is used to jump quickly out of the function if
the particle is too far away from the center to touch
the cluster.

For the Eden-Meakin model we currently do not
have a dedicated cluster type (which could be a graph
with weighted nodes or at least some optimisations re-
garding the boundary) but instead use a slightly spe-
cialized Meakin cluster that does the scoring in the
add_particle-method. This gives decent performance
to create usable results which is why we have not im-
plemented an extra cluster yet.

4.1.4 Interactions

Currently every interaction is implemented as a set of
overloads of the interact-function, that gets an ad-
ditional state-parameter. This state is used in the
main program loop to determine in which direction the
object may move and if it is to be merged.

Probabilities for different directions are needed to
implement a sticking-probability, because we have to
prevent two objects that did not merge in the current
step from moving into each other. They could do that
if we were not careful, because we have no real lattice

7

Figure 9: The dependence of the radius of gyration
on the ‘kill-radius’, i.e. the distance from the
center of the cluster at which diffusion particles
are removed. The line is a simple power law and
meant for illustrational purposes only.

but only objects that know their position themselves
and are not indexed by it.

Furthermore, by changing the probabilities, forces
acting on the particles can be simulated as discussed
below.

4.1.5 The Updater

The Updater’s role is to prepare the environment in
each step. In our implementation an Updater is a func-
tor (in the C++ sense, meaning a callable object) that
takes references to the containers of particles and clus-
ters.

For the diffusion limited growth the updater first re-
moves a particle if it is too far away from the cluster,
we used the value of 2 times the radius of the cluster
that is also used in Meakin’s paper. Too verify that this
indeed does not change our measurements we plotted
the dependence of the radius of gyration (which is our
main statistical value) against this kill-radius in figure
9. One can see that from a deletion radius of 2 on the
radius of gyration stays mostly constant.

Although we did not do enough runs on this to re-
ally prove this, those tries gave us enough evidence to
believe Meakin.

4.1.6 Visitor Interface

Because we did not want to clutter the interface of
world we implemented the Visitor pattern[10] as an
entry point for both drawing and statistics facilities. In
a later implementation the currently public methods
get_particles and get_clusters will disappear and
will be replaced by a more versatile interface.

We implemented real-time drawing in the beginning
for debugging purposes, as it is easier to see if the grow-
ing works from an image than from raw data or plots.
Currently only Meakin and Eden drawing are imple-
mented, where the latter uses the current score of a
particle to select a color from a scale. Because it was

very difficult to see anything from the 3D renderings,
we added an anaglyph drawer, which enabled us to
see the fractal structure with red-cyan glasses. One of
those renderings is seen in fig. 10.

Our statistics_visitor lets one plug different cal-
culators together and outputs a header and data lines
to a specified stream. The produced files where used
for all our dimensionality calculations.

4.2 Examples

4.2.1 Higher statistics on DLA clusters

Limited by the computational resources available at
his time, Meakin based his conclusions about the prop-
erties of diffusion limited aggregation on a handful of
clusters. He used those to estimate their fractal dimen-
sion given by the radius of gyration and the density-
density-correlation in 2- to 6-dimensional space and
concluded d ≈ 5

6D where D is the topological, i.e. here
also the embedding, dimension. This is only a heuristic
result, e.g. you can easily see that it does not hold for
D = 1, where d = 1 as well. Additionally, there are
strong fluctuations in dimensionality even for particle
numbers as large as 10,000, so there is some uncertainty
left.

Being unaware of any theoretical results for DLAs
settling that issue, we checked Meakin’s results on 196
clusters in two and three dimensions up to 100,000 par-
ticles respectively. Care was taken to reduce autocor-
relations: all growth processes were uniquely seeded
and entered the statistics only once, i.e. a cluster with
a final size of 50,000 particles has not been used as a
cluster of 20,000 particles at some earlier stage of its
development. Applying the radius of gyration method
to determine the clusters’ dimensionality we obtained
d±∆d = 1.70±0.02 for D = 2 and d±∆d = 2.50±0.03
for D = 3 in perfect accordance to Meakin’s results.
Determining the dimension by the density-density-
correlation can not be automated as easily, as the range
in which it scales in a fractal fashion is less obvious.
Nevertheless, it was checked by hand in about ten cases
for each dimensionality giving no significant deviation
from the values obtained via the radius of gyration, as
already stated by Meakin.

Some seven-dimensional cluster have been grown,
but since a particle has more possibilities to ‘walk
around’ the cluster it takes significantly more time for
it to hit, while it does not necessarily has to move far
away from it where it would be killed. Although the re-
sults obtained are not statistically significant and may
suffer from finite-size artifacts, they still do not rule
out the ‘law of 5

6 ’. The large fluctuations in fractal di-
mensionality Meakin observed at 10,000 particles, un-
fortunately do not decrease when going to clusters of
100,000 particles. It seems likely that this is not due
to a finite-size effect, but rather an artifact inherent in
the methods of measurement (radius of gyration and
density-density-correlation). Remember – the struc-
tures are not true fractals in the mathematical sense.

8

Figure 10: An anaglyph of a 3-d Meakin cluster of 8,000 particles

Interestingly, our data cannot rule out that the fractal
dimension d is in fact a random variable with expec-
tation value of about 5

6D even in the limit N → ∞.
If this is correct, it is also a strong hint for the self-
similarity and scaling properties discussed before.

4.2.2 Cluster diffusion

Instead of growing cluster from diffusing particles, one
could as well grow a cluster from diffusing clusters.
One could take several of cluster-diffusion-grown clus-
ters to grow a higher-order cluster still. One could go
on like this. Where is the point? Earlier, we have seen
that the fractal dimension of a structure is connected
to its scaling behaviour. If we now compose clusters
from smaller clusters of a given size, we impose an ad-
ditional scaling behaviour onto the system. In general,
the overall dimension will result from the original, sta-
tistically induced scaling behaviour and this new one
in some complicated way we do not want do investigate
further here. Instead, we just grow 70 clusters by the
following recipe:

• Build a cluster of n particles according to Meakin’s
original model

• Take n of these cluster to assemble a new cluster

• Go on like this until the currently assembled clus-
ter has more than 10,000 particles

Changing n from 5 to 50 in increments of 5, dimensions
between 1.7 and 1.3 can be created. Moreover dim(n)
appears to be monotonic. Other than just the final size,
the average coordination number remains unchanged.
So we can change the fractal dimension while maintain-
ing other properties. Most important, we could stay

with our original growth principle of Brownian motion
and adhesion, which, after all, has been physically mo-
tivated.

4.2.3 Dendrites

Dendrites, as commonly found in mineralogy, are fern-
like structures on rocks. They are easily confused with
plant fossils (dendron even is Greek for tree) although
they are entirely inorganic in origin. Usually, they are
formed by sedimenting metal oxides. In fact, this is the
very process which inspired Witten and Sander in the
first place. The important difference to the Meakin
clusters we have discussed so far is that in this case
there is a preferred orientation. In nature, it is induced
by the flow of water carrying the sediments (and maybe
to some extend also by the geometry of the rock, the
seed in the language of the growth model). The Meakin
model can be adapted to describe this process in the
following straight-forward way:

• Create particles not uniformly on the n-sphere,
but with a fixed x0 coordinate. All other coor-
dinates can be distributed uniformly.

• Increase the probability for stepping along the 0-
direction in the random walk. The more probable
it becomes, the stronger is the ‘flow’.

• Seed with a solid plane of particles perpendicular
to the 0-direction not too close to where particles
are created.

Depending on the strength of the ‘flow’, you can grow
pine-like (strong) or bush-like (light) dendrites. The
distribution of the other coordinates upon creation
does not seem to have much influence as long as it is

9

Figure 11: Dendrites as found in mineralogy develop
if the random walk has a preferred direction.
This example was grown with a high flow rate,
which leads to pine-shaped structures.

continuous. Otherwise, several dendrites can be grown
simultaneously. The influence of the seeding geometry
has not been studied systematically, but we conjecture
that apart from determining the initial position of the
dendrite, it has no observable effect, because as with
the original Meakin model new particles are nearly ex-
clusively added to the outer regions of the dendrite.
Other interesting modifications would be the introduc-
tion of vortices in the ‘flow’ or sticking probabilities.
Some dendrites grown with this model at a high flow
rate are displayed in fig. 11.

4.2.4 A Toy Model: Tubes

The idea of preferred directions and boundary con-
ditions can also lead to quite a different set-up: By
the techniques developed for dendrites, one can also
model particles flowing through a tube. In this case,
an n-dimensional tube shall be a hollow n-dimensional
cuboid the 0-extend of which is much larger than all
other. The direction of flow is chosen to be the 0-
direction. Depending on the size of the tube, the flow
rate and the incoming particle density, dendrites grow-
ing from the boundaries will at some point block the
tube entirely. This is of course hardly a useful model
to describe real world phenomena or even useful in en-
gineering. One can, however, learn some things about
the behaviour of the Meakin model if many free par-
ticles are involved. One non-obvious result is that the
tube will stay clear of obstacles for a longer time if
more particles are injected. This is because the higher
the density, the more likely it is for middle-sized clus-
ters to form during transport. According to the con-
cept of mass introduced by Meakin, the probability for
those cluster to touch the tube before leaving it, be-
come smaller.

4.2.5 Growing towards the Sun

This final example is based on the Eden-Meakin model.
Again, the basic idea is to introduce a preferred direc-
tion. Additionally, as we know of the adaptive nature
of this particular model, we shall try to change the pre-
ferred direction over time. For the sake of concreteness
let us attempt to model a plant growing towards to
sun. We will try to do so by only changing the scor-
ing algorithm. The creation of new particles shall still

be possible at each nearest-neighbour site. That way,
we want to emulate the process of natural selection on
a microbiological level. In altering the scoring proce-
dure we have to take care not to create a situation in
which a particle has a higher score than any of its an-
cestors because we do not want the cluster to be split.
This leaves only a limited number of possibilities one
of which is to introduce an additional factor for the
chain score, such that ∆S = γ(~x)/(1 + l)η, where ~x is
the position of the new particle. Since our new scoring
should somehow reflect the influence of the sun, seed
the cluster at the origin and choose

γ(~x) =

{
~x·ŝ
|x| if x0 > 0

0 if x0 ≤ 0,

where ŝ is a unit-vector pointing into the direction of
the sun. This reflects the fact that sunlight reaches
the earth essentially as parallel rays. The 0-direction
is interpreted as the ‘up-direction’. It is known that
the growth of plants is also crucially influenced by the
direction of gravity, but we shall neglect that here and
forbid growth downwards manually.

Fig. 12 depicts in 2 dimensions the extreme case,
where the sun has been situated at (0, 1) during the
first 10,000 steps and at (0,−1) afterwards. It can
clearly be seen, how the plant follows the sun. The
‘old’ branches gradually degenerate because the sun
never returns.

In a more sophisticated model, where the sun moves
continuously, one encounters the following behaviour:
depending on the rate of growth determined by the
parameters η and Nm, the plant follows the sun for
a few ‘days’. At some point however, the memory ef-
fect described before inhibits a timely adaptation and
the plant only ‘sees’ the average illumination becoming
symmetric and time-invariant in the upper half-space.
As with the original Eden-Meakin model, a stationary
phase is reached. There also is another possible out-
come: if the ‘night’ is too long, the plant may ‘die’, i.e.
particles are removed. Again, due to the memory effect
this will only happen during the first night or not at
all.

Instead of only talking about living and dying plants,
one could now implement some kind of scoring for a
plant as a whole, describing its adaptivity with respect
to environmental constraints. Together with an en-
larged parameter set for the clusters, being determined
by some genetic algorithm based on this scoring, one
would obtain a toy-model of evolution.

While this is in a direct line with Eden’s original
aims, we are now admittedly abandoning the realm of
fractal growth – and so the scope of this text.

4.3 Limits of the Current Approach and
Outlook

The current implementation has some drawbacks and
unattractivenesses. A main problem are the interac-
tions. For starters it is very complicated to implement

10

Figure 12: A tree is what one might see in this partic-
ularly scored Eden model. During the first
10,000 steps, the direction of the sun is ŝ =
(0, 1) and ŝ = (0,−1) later (text).

additional interactions, like the Coulomb interaction.
One has to overload interact three times with nearly
identical code, which is quite unfortunate. It should
also maybe renamed to interact_with, because it
handles the interaction of the first object with the sec-
ond and is not symmetric.

A major drawback of our current approach is that
we cannot define different boundaries for clusters. This
would be very favorable for example for the Dendrites,
because their natural boundary is not a sphere but
rather the current height of the crystals. Also the tube
model could be sped up with that.

Another smaller problem is the fact that we currently
have not found a good method to ‘split’ clusters to
model some kind of erosion, which would make the tube
model far more useful. This could be helped by using a
similar scoring algorithm as in the Eden-Meakin model.
Still, finding out if a cluster is somehow ‘unstable’ is
not an easy task.

To make the code less error-prone it would also be
good to unify the interfaces of clusters and particles
somehow, because the code of world::step is cur-
rently very repetitive and one has to see if position
or get_center() has to be used. Also it is unpleasant
that particles play a dual role, as carriers of charge or
other interaction information on the one hand, which
the also have when contained in clusters, and as a kind
of ‘single-particle clusters’ on the other, which they
only have as free particles.

To tackle all theses problems we are going to de-
fine new, more general concepts. We will introduce
concept ParticleContainer which roughly covers
static_cluster and single_particle. All bounding
calculations are to be done inside the object itself. Fur-
thermore we will introduce Interaction, which defines
all particle-state information (which is the value_type
of ParticleContainer) and is chainable, so that we

can for example add an electric charge to sticky parti-
cles.

This will enable us to streamline great amounts of
our code and see how the fractals change when inter-
actions are turned on.

Further Reading Again, Meakin’s results on DLA are

summarized in [3]. The Eden-Meakin model is based on

[5] and [6]. A development version of trivial can freely

be obtained from github.com as the repository comp phys

of filmor ’s. Please note that at the time of writing, it is

still heavily under construction and some parts may not be

functional or only implemented in a ‘hackish’ way.

5 Conclusion

Even 30 years after its advent, fractal growth still is an
exciting topic and not completely understood. There
are many links to other disciplines besides mathemat-
ics and physics, be it biology, engineering, computer
science or art.

In fact, there is one additional striking feature about
fractals in general: They are considered beautiful. We
have seen that there is a deep connection between di-
mensionality and scaling laws, i.e. self-similarity. The
question whether the perceived beauty of fractals is
due to this special kind of symmetry (the human brain
seeming to react to symmetry on a very fundamental
level), or the perceived beauty of symmetries is due
to fractals being a phenomenon common in nature re-
mains for the reader to solve or maybe psychology.

References

[1] T. A. Witten and L. M. Sander, Phys. Rev. Lett.
47, 1400 (1981)

[2] H. E. Stanley, J. Phys. A 10, L211 (1977)

[3] P. Meakin, Phys. Rev. A 27, 1495 (1983)

[4] P. Meakin, Phys. Rev. Lett. 51, 13 (1983)

[5] M. Eden, Proc. 4th Berkeley Symp. on Mathemat-
ics, Statistics and Probability, vol. 4, F. Neyman,
ed., (1961)

[6] P. Meakin, Physica A, 179 (1991)

[7] B. Mandelbrot, The Fractal Geometry of Nature,
Benoit B. Mandelbrot

[8] M. Matsumoto, T. Nishimura, Mersenne twister.
In: ACM Transactions on Modeling and Com-
puter Simulation (1998)

[9] http://boost.org/libs/optional

[10] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley (1995)

11

