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1 Introduction

The rapid advancement of the computational power over the last years opens new perspectives
for the study of many-particle systems. In the current report we present the investigation
of the fractal growth by means of the Monte Carlo simulation. First, we study the diffusion
limited agglomeration (DLA) model of the irreversible growth of a single cluster grown from
a seed particle fixed in the center of the system in two- and three-dimensional space. Next,
the DLA model of the irreversible growth for the multiple mobile clusters is examined. Then
follows the simulation of the adaptive network growth based on the Eden model. The density-
density correlation function and the radius of gyration along with the other relevant fractal
quantities are calculated. The fractal dimensions are calculated in two ways, first, from the
radius of gyration and, second, from the density-density correlation function. The dependency
on the parameters of the model is investigated and discussed. The results are compared with
the former works by Meakin ([7],[10],[12]).

2 Fractals

2.1 Basic Definitions and Notions

One of the most important characteristic features of fractals is self-similarity. This means
that if we change the sizes of the fractal by a several orders of magnitudes comparing with
the initial scale or if we take a small part of the fractal it will look exactly the same as the
initial object. By saying ”look as the initial object” we mean that the new object would have
not only a similar geometrical structure but would also have the same statistical properties as
the initial fractal. The property of self-similarity could be well demonstrated on the examples
of the Cantor Set (fig. 1) and Mandelbrot Set (fig 2). This fractals have been thoroughly
studied in mathematics and further details on them could be found in [2] and [3].

Figure 1: The Cantor Set [1].

Figure 2: The Mandelbrot Set [1].

The volume of any fractal can be measured by covering it with d dimensional spheres of
radius l. We will use notation d for the usual Euclidian dimension. Then we could get the
estimate of the fractal volume as:

V (l) = N(l)ld, (1)
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where N(l) is the smallest number of d dimensional spheres needed to completely cover the
fractal object. We assume that l is much smaller than the linear size L of the object. For
simple shapes of objects V (l) reaches a constant value independent of l in the limit of infinitely
small l. But for the fractals V (l)→ 0 with l→ 0 while the area of a fractal could be infinitely
large [4]. Alternatively, to measure the fractal volume we could imagine a d dimentional
lattice with lattice spacing l covering the region of a space that contains the fractal. Then
N(l) would be a number of all d dimensional boxes of volume ld that cover the fractal. This
method is called box counting.

To demonstrate the two aforementioned features of fractals in a simple way we shall refer to
a common example of the shore of England. The curvature of the shore looks approximately
the same if being observed from different altitudes. In other words we can see the same
structure of the coast if we watch at different scales, which illustrates the self-similarity of
the shore. Now if we try to measure the length of the shore we would notice that it increases
indefinitely with the decreasing of the magnitudes of the measuring device (fig. 3). But its
area tends to decrease and go to zero. Thus, we see that the length of such object is much
bigger compared to a line on the same scale and consequently such object is too large to be
a one-dimensional line, but, on the other hand, the area of the shore is too small in order it
could be a two-dimensional object. Already at this stage we could give a simple definition

Figure 3: Measuring the length of the shore of England. Decrease of the sizes of the measuring
devices (spheres) leads to the infinitely large length but infinitely small area [1].

of a fractal. In the most general case any object is a fractal, if it is impossible to get a well
converging finite measure for volume, surface or length when changing the linear sizes of the
measuring device (d dimensional spheres or boxes) over a several orders of magnitudes [4].

Having an initial object with a given geometrical configuration, basically, there are two
possible ways of forming a self-similar fractal either by repeated addition of copies of the
initial object (fig. 4 a) or by subsequent division of the initial object (fig. 4 b). In the
case of real physical systems there are always restrictions on the maximum and minimum
possible scales imposed by the linear sizes of the whole fractal structure and its constituents
respectively. Obviously, the most relevant, from a physical point of view, way of self-similar
structure formation is the addition of similar objects, since due to this mechanism most of
the structures in real physical systems are grown.

As was pointed out above, fractals can not be described by means of usual (integer)
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Figure 4: Iterative procedure for generating self similar fractals. (a) Repeated addition and (b)
subsequent division of the initial object. k - number of iterations. In the limit k → 0 we will get
mathematical fractal which is infinitely large (a) or infinitely fine (b) [4].

Euclidian dimensions. In general case fractal dimension is noninteger and we shall denote it
as D. For the case of growing fractals the volume V (L) is usually considered as function of
linear size L of the region of a d dimensional space occupied by a fractal. To compute the
volume one usually covers the fractals with d dimensional spheres (of boxes) of a radius l
which is set to the smallest typical size of the system (length of the constituent particles).
In the units of a such characteristic length the volume will be simply equal to the number of
such spheres, V (L) = N(L). Assuming that the object is the mathematical fractal implies
that the volume of the object diverges according to a non-integer exponent [4]:

N(L) ∼ LD. (2)

This relation allows for the defining of the fractal dimension D [4]:

D = lim
L→∞

ln(N(L))

ln(L)
. (3)

For the fractals generated via subsequent division of the initial object the linear size of the
whole structure is fixed but it gets infinitely fine in the limit of infinite number of subdivisions.
In such case the number of spheres needed to cover the fractal is considered as a function of
the radius of the spheres. Logically, one can write [4]:

N(l) ∼ l−D, (4)

and, consequently, define D as [4]:

D = lim
l→0

ln(N(l))

ln(1/l)
. (5)

It could be easily shown that both of the aforementioned definitions lead to the integer
dimensionality in the case of simple non-fractal objects. Using, for instance, eq. 3 we can also
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define the fractal dimension of the fractal depicted at fig. 4 a. In this case we have N = 5k,
L = 3k and D = 1.465.

Typically fractals only occupy a negligible fraction of the ambient region in the d dimen-
sional Euclidian space. If characteristic linear size of the ambient volume Vambient is L then its
volume could be estimated as Ld. If consider a case of a growing fractal due to the repeated
addition of particles of the same characteristic size l, the volume of such fractal Vfractal could
be estimated using the total number of such particles as ldN (which is equivalent to the
formula 1). Now if to measure L in the units of l we would have:

ln(Vfractal)

ln(Vambient)
∼ ln(N)

d ln(L)
, (6)

and in the limit L→∞, this ratio yields:

lim
L→∞

ln(Vfractal)

ln(Vambient)
∼ D

d
. (7)

Giving this relation we could think of the fractal dimension D as of a measure of how efficiently
fractal occupies the space.

We will not give here a rigorous definition of the Hausdorff dimension, because it is rather
a matter of strict mathematical analysis rather then the current project in computational
physics. In fact, for the analysis of real physical systems it is more convenient to use the def-
inition of fractal dimension according to the formula 3. The strict definition of the Hausdorff
dimension could be found in many textbooks on the subject (e.g. [3]). We will just outline
the main idea behind the Hausdorff approach of treating fractals. As was mentioned above
all physical systems have the cutoff of the length due to the finite system size L. This allows
for using dimensionless measure of length:

ε =
l

L
, (8)

where again l is the radius of the covering spheres. Then in this units formula 2 and formula 4
have the same form:

N(ε) ∼ ε−D, (9)

here N(ε) is the number of d dimension spheres of radius εL needed to cover the fractal.
Main inconvenience in the dealing with fractals is that fractal volume diverges if measured
with spheres with integer dimension. To overcome this obstacle Hausdorff proposed to use
the spheres with volume εD. Another idea of Hausdorff was to find such kind of measure for
fractals which would be independent of the resolution of the measurement, ε. The Hausdorff
measure is given by [4]:

F = N(ε)εD. (10)

F is independent of ε only if the dimension of the spheres used for measuring coincides with
the fractal dimension D. Ordinary fractals are called those structures which have dimension
D defined according to formula 9 smaller then the dimension d of the region of a space
containing the fractal. But there are some exceptions, so-called fat fractals that have D = d
[4].

One of the possible way of classifying fractals is due to their self-similarity [1]. The
strongest type of self-similarity is the exact self-similarity (e.g. Cantor Set depicted at fig. 1).
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This type of fractals appears to be completely identical at different scales. This is rather
idealistic mathematical fractal model. The second type of fractals are those fractals that
demonstrate quasi-self-similarity. This means that at different scales fractal approximately
resembles the same geometry and statistical properties (e.g. Mandelbrot Set depicted at
fig. 2). And the third type is statistically self-similar fractals. This means that at different
scales fractals have only preserved some statistical properties. The statistical self-similarity
is the case for the most of the physical systems. One of the ways of forming such clusters is
due to the random processes (e.g. Brownian motion and DLA).

2.2 Measuring Fractal Dimension in Computer Simulation

One possible way to calculate the fractal dimension is to make use of a density-density corre-
lation function [4]:

C(r) =
1

V

∑
r′

ρ(r + r
′
)ρ(r

′
), (11)

where ρ(r) is a local density at the point r and it is equal to 1 if the point belongs to the
fractal object and 0 otherwise. In the case if we have discrete space where the objects can
occupy only lattice points ρ(r) is the density at the lattice site with coordinates r. For the
growing fractals, as was mentioned above, the volume V equals to the number of the covering
spheres N . According to the definition of the density-density correlation function we can
estimate the number of covering spheres (with radius equal to the smallest size of constituent
particles) in the d dimensional volume of radius L:

N(L) ∼
∫ L

0
C(r)ddr. (12)

This expression makes it obvious to think of C(r) as a probability density of finding two
points belonging to the fractal at distance r between each other. Usually the vast majority
of ordinary fractals are isotropic, and, consequently the density-density correlation functions
depends only on the absolute value of the distance between the particles, C(r) = C(r). It could
be mathematically shown that for the non-trivial self-similar (it better to say self-invariant)
objects the density-density correlation function follows the next power law dependency on r
[4]:

C(r) ∼ r−α. (13)

Using this power law and formulas 12 and 2 it is straightforward to find the relation between
usual Euclidian dimension d, fractal dimension D and the density-density correlation function
exponent α:

D = d− α. (14)

To get α one usually computes the density-density correlation function from the computer
simulation data and then defines α via a linear fit of ln(C(r)) as a function of ln(r).

The alternative way of defining D is to use as the estimate for the measure of the linear
size L of the fractal its radius of gyration Rg. Radius of gyration Rg is simply the average
distance between points (particles) of the fractal and its center of mass [4]:

Rg =
1

N

N∑
i=1

ri, (15)
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where ri is the distance between the i-th particle of the fractal and its center of mass and N
is the total number of particles in the fractal. For the non-trivial self-invariant objects the
radius of gyration follows the next power law dependency on N ([4],[7],[9]):

Rg ∼ Nβ. (16)

Using this power law and the scaling law of the number of particles in the fractal (formula 2)
one immediately notices the relation between the fractal dimension and the radius of gyration
exponent β:

D =
1

β
. (17)

And again to getRg one usually computes the slope from the linear fit of ln(Rg) as a function of
ln(N). This method is the most frequently used for the diffusion limited aggregation (DLA)
clusters, because usually even for comparably small clusters (fractals) there is a sufficient
region of values of ln(N) for which ln(Rg) resembles very nicely a linear behavior.

In the following in this report we shall denote the fractal dimension computed using
the radius of gyration as Dβ and the fractal dimension computed using the density-density
correlation function as Dα.

2.3 DLA Model

Diffusion limited aggregation (DLA) model was first proposed by Witten and Sander [6] in
1981 and later further developed and implemented by Meakin ([7],[8],[9],[10]) for the computer
simulation of fractal formation in systems where mainly diffusion governs the transport of
particles. A precondition for such kind of systems is that the concentration of reacting
particles has to be low. Diffusion limited aggregation is experimentally observed in a wide
range of electrochemical systems (e.g. [13],[14]). Typical DLA fractal clusters are depicted at
the figures (5,6,7).

In such systems particle aggregation mainly happens due to the Coulomb and Van der Waals
forces. Since the concentration of active particles is low they interact rarely and the cluster
growth is mostly due to the adding (via attraction) a single particle to the cluster at a time
rather then large agglomerates of particles. As it is seen from figures (5,6,7) the cluster growth
preferably happens at the outer regions of the structures. The probability of a particle being
stick to a cluster depends on the type of interatomic (or intermolecular) potential. If particle
does not stick to the cluster once it has reached it for the first time the particle continues to
diffuse in the vicinity of the cluster till it is finally absorbed by the cluster or till it leaves the
region of the cluster.

It is possible to describe the DLA growth process analytically. The derivation of differential
equation describing DLA could be found in [5], we do not present it in this work, because it
is beyond the scope of the current project.

3 Computer Simulation of Fractal Growth

3.1 Irreversible DLA Model of Single Immobile Cluster Formation

3.1.1 Simulation Method

To simulate diffusion limited cluster aggregation process we have followed the model proposed
by Witten and Sander[6] and later developed by Meakin ([7],[8],[9]). The model and algorithm
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Figure 5: Scanning electron micrograph of a frac-
tal structure formed by evaporating a gold solution
on a glass slide. This structure has a fractal di-
mension of 1.7 [14].

Figure 6: Digitized growth pattern of copper de-
posited at an electrode potential of -5V from so-
lution of CuSO4 with concentration 0.05 after the
elapsed time of 10 min. [13].

Figure 7: A typical DLA cluster grown from a
copper sulfate solution in an electrodeposition cell
[1].

are based on the Monte Carlo method. We have used two dimensional simple cubic lattice.
Particles are allowed to occupy only the lattice sites. Initially a seed particle is placed in the
center of the system. Then the first particle is added to the lattice at sufficiently far distance
from the seed and undergoes a random walk over the lattice via successive random jumps to
one of the four nearest neighbor sites. Probability of a jump to any of the nearest neighbor
sites is the same and normalized in order to have the overall jump probability equal to unity.
Once the particle reaches one of the adjacent to the seed sites it could be attached to the
seed according to the sticking probability at the first nearest neighbor sites pnn and to the
sticking probability at the second nearest neighbor sites psnn. To be more specific, pnn is
the probability for moving particle to stick to the cluster if there is one particle that belongs
to the cluster at one of the nearest neighbor sites of the moving particle. Consequently, if
there are two or more particles belonging to the cluster at the first nearest neighbors of the
moving particle then it has higher probability to stick to the cluster. The same explanation is
applicable to the psnn with respect to the second nearest neighbor sites. During the simulation

9



each of the first nearest neighbor sites is checked one after another after each jump. If the
moving particle sticks to the cluster at one of the nearest neighbor sites then the checking
is stopped. If the particle doesn’t stick to any of the nearest neighbor sites, then the second
nearest neighbor sites are checked one after another. Such approach is equivalent to the
computation of the conditional probabilities for the moving particle to stick at each of the
first or second nearest sites, but it rather works faster if implemented in the simulation. So, if
the particle sticks to none of the first or second nearest neighbor sites once it hits the cluster
for the first time, then it continues the random walk till it will be attached to the cluster of till
it moves too far from the cluster. In later case particle is deleted from the lattice (”killed”)
and starts off again from the closer distance to the cluster. After the first particle is finally
attached to the cluster the second particle is introduced to the lattice and undergoes the
same procedure. In such way the cluster is formed. We have started off the particles at the

Figure 8: Schematic depiction of the model applied to simulate cluster growth from the initial seed
particle.

distance Rmax+5 from the cluster, where Rmax is the maximum distance from the seed to the
outermost particle in the cluster and all the distances are measured in the units of the lattice
spacing. If the particle moves further then 3Rmax from the cluster, it is killed and started off
again at random position on the circle of radius Rmax + 5 centered at the same point with
the seed particle. Schematic depiction of this system can be found at the figure (8). We have
used different values for the radius of the start off circle and for the distance at which particle
is killed. And the corresponding results were the same within a statistical error. To decrease
the computational time the checking of the first and second nearest neighbor sites is started
if the particle reaches the distance Rmax + 2 from the cluster.

3.1.2 Results for Two-Dimensional Clusters

We shall start with a discussion of the simplest for the implementation case of pnn = 1.
Typical fractal clusters formed under such condition are demonstrated at the figure (9) and
at the figure (44) from appendix A. One can notice from these figures that such type of clusters
posses quite a loose structure, because the cluster growth happens mostly at the outer regions
of the structure, since a wondering particle has a higher probability of crossing large branches
of the cluster rather then penetrating into the inner region. Figures (13,14) demonstrate that
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the cluster density decreases from the center of the cluster towards its outer regions. Despite
of the substantial random fluctuations one could notice that the density as the function of a
distance from the center of the cluster continuously falls without regions of constant density.
Figure (14) demonstrates how random fluctuations could be reduced via averaging over several
clusters. One could expect that the density drops according to the same power law as the
density-density correlation function which reveals the essential fractal nature of the DLA
clusters. We have computed the density-density correlation function which is shown at the
figure (11). ln(C(r)) shows approximately linear dependency on ln(r) and constant slope over
the region of 0 < ln(r) < 4.5. This indicates that our results are consistent with formula (13)
and we have C(r) ∼ r−α. In order to compute C(r) one normally calculates the number of
particles at distance r from the reference particle for the all particles in the cluster and then
normalizes it using the total number of particles and the corresponding volume between two
spheres of radius (r − δr) and (r + δr) respectively. We have used the value 0.5 for the δr.

Figure 9: Typical two dimensional cluster of N = 12000 particles obtained from the Monte Carlo
simulation of DLA growth from the seed particle fixed in the center of the system. Sticking probability
at the nearest neighbor sites pnn is 1.
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Figure 10: Typical two dimensional cluster of N = 12000 particles obtained from the Monte Carlo
simulation of DLA growth from the seed particle fixed in the center of the system. Sticking probability
at the nearest neighbor sites pnn is 0.1.

Figure 11: Double logarithmic plot of the
density-density correlation function for the DLA
cluster of N = 12000 particles and sticking proba-
bility at the nearest neighbor positions pnn equal
to 1. The plot is received via averaging over 15
clusters.

Figure 12: Double logarithmic plot of the radius
of gyration for the DLA cluster of N = 12000 par-
ticles and sticking probability at the nearest neigh-
bor positions pnn equal to 1. The plot is received
via averaging over 15 clusters.
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Figure 13: Density distribution from the center
of the DLA cluster of N = 12000 particles and
sticking probability at the nearest neighbor posi-
tions pnn equal to 1. The plot for a single cluster.

Figure 14: Density distribution from the center
of the DLA cluster of N = 12000 particles and
sticking probability at the nearest neighbor po-
sitions pnn equal to 1. The plot is received via
averaging over 15 clusters.

Figure 15: Coordination number for the DLA cluster of 12000 particles and pnn = 1.

The radius of gyration Rg computed in our simulations for the case of pnn = 1 also
demonstrates expected power law dependency Rg ∼ Nβ (fig. 12).

The density-density correlation exponent α and the radius of gyration exponent β were
calculate as was discussed in section 2.2. We also want to draw your attention that for the
fitting procedure we have created or own fitting C++ program, which is based on the least
square method and is able to perform a fit with a polynomial of any desired power. The
results for the case of pnn = 1 for the α, β and the average coordination number (the average
number of the nearest neighbor sites) are given in the table (1) and for the corresponding
fractal dimensions Dα and Dβ in the table (2).

The results from the tables (1,2) are the same (within statistical error) for the clusters
of different numbers of particles N . Which points out that for the cluster sizes used in the
simulations scaling effects are negligible. Both fractal dimensions Dα and Dβ seem to oscillate
around the same value of ≈ 1.7, which is smaller than the ambient Euclidian dimension d = 2.
One remark could be made concerning Dα in the cases of N = 50000 and N = 100000, in
this cases Dα ≈ 1.67 which (even within its error) is smaller then 1.7. But to make any
conclusions regarding the overall behavior of Dα for large clusters (if it tends to decrease) one
needs bigger statistics.
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Density-density
correlation

Radius of gyration exponent, β function Coordination
N 50%a 75%b 90%c 95%d exponent, α number

12000 0.59448±0.04386 0.58972±0.03431 0.5845±0.0281 0.5844±0.0305 0.3088±0.063 2.1855±0.0049
15000 0.5935±0.0243 0.598±0.0232 0.5971±0.0192 0.5959±0.019 0.313±0.048 2.1846±0.0096
17000 0.5881±0.0389 0.584±0.038 0.5822±0.0322 0.5833±0.0299 0.309±0.035 2.1845±0.0064
20000 0.5889±0.0386 0.5882±0.0383 0.5836±0.0306 0.5822± 0.0249 0.3176±0.0322 2.186±0.007
50000 0.5897±0.0254 0.5908±0.0159 0.5917±0.0143 0.59±0.015 0.3259±0.0252 2.1837±0.0055
100000 0.587 ±0.029 0.5866 ±0.0299 0.587 ±0.021 0.5873 ±0.0177 0.326 ±0.017 2.1857 ±0.0024

Table 1: Results obtained from the simulation of DLA cluster formation on two dimensional simple
cubic lattice with a sticking probability at the nearest neighbor sites pnn = 1 and at the second nearest
neighbor sites psnn = 0. N is the total number of particles in the final cluster. a - Radius of gyration
exponent computed using last 50% of particles added to cluster, b, c and d - correspond to the radius
of gyration exponent computed using last 75%, 90% and 95% of particles added to cluster respectively.
All values of α, β and coordination number are averaged over 10 clusters.

Dβ
N 50% 75% 90% 95% Dα

12000 1.6822±0.1241 1.6957±0.0987 1.711±0.0824 1.7112±0.0894 1.6912±0.063
15000 1.685±0.069 1.6722±0.0648 1.6749±0.0539 1.6783±0.0535 1.687±0.048
17000 1.7005±0.1126 1.7126±0.1114 1.7178±0.0949 1.7144±0.0878 1.691±0.035
20000 1.698±0.111 1.7003±0.1108 1.7135±0.0897 1.7176±0.0734 1.6826±0.0322
50000 1.696±0.073 1.693±0.046 1.69±0.041 1.6948±0.0422 1.6741±0.0252
100000 1.7038 ±0.0841 1.7047 ±0.0868 1.703 ±0.061 1.7027 ±0.0512 1.674 ±0.017

Table 2: Fractal dimension computed from the radius of gyration and density-density correlation
function given in table (1).

One could also notice from the tables (1,2) that for the large clusters (N = 50000) we
have smaller errors.

From the figure (15) one could notice that the average coordination number tends to the
constant value in the limit of large N .

In the case of the small sticking probability at the nearest neighbor sites clusters get more
dense. For instance, it could be seen from the figure (10) for the case of pnn = 0.1. The
results for the α, β, average coordination number, Dα and Dβ in the case of pnn < 1 could be
found in appendix B (tabs. 5,6). Surprisingly, but it appears to be that density-density cor-
relation function exponent and radius of gyration exponent along with corresponding fractal
dimensions remain essentially the same within statistical error for the range [0.1 – 1.0] of the
sticking probability at the nearest neighbors, whereas, as expected, the average coordination
numbers increases with the decrease of the pnn.

In the case of zero sticking probability at the nearest neighbor sites but nonzero sticking
probability at the second nearest neighbor sites the clusters become much more looser and
have more transparent structure, which occupies the lager region of space compared to the
corresponding clusters with pnn 6= 0 and the same number of particles (fig. 16,17). The results
for the α, β, average coordination number, Dα and Dβ in the case of psnn 6= 0 and pnn = 0
could be found in the appendix C (tabs. 7,8). In these results we have again approximately
the same values for the exponents and fractal dimensions for different values of psnn, and,
in addition, their values (within statistical error) are same as for the case of nonzero pnn.
These results confirm Meakin’s outcome [7], which was received with a very poor statistics
for averaging.
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Figure 16: Typical two dimensional cluster of N = 12000 particles obtained from the Monte Carlo
simulation of DLA growth from the seed particle fixed in the center of the system. Sticking probability
at the second nearest neighbor sites psnn is 1.

Figure 17: Typical two dimensional cluster of N = 12000 particles obtained from the Monte Carlo
simulation of DLA growth from the seed particle fixed in the center of the system. Sticking probability
at the second nearest neighbor sites psnn is 0.1.
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We have also computed α, β, average coordination number, Dα and Dβ for the case
when pnn and psnn are simultaneously nonzero. The results are given in the appendix D
(tab. 9,10 and fig. 49,50).

3.1.3 Results for Three-Dimensional Clusters

To simulate DLA cluster formation in 3D space we have followed exactly the same simulation
method as for the 2D case. The density-density correlation function for the case pnn = 1 is
shown at the figure (18). ln(C(r)) resembles approximately linear behavior over the range
(0 – 3) for the values of ln(r) which makes possible the determination of the density-density
correlation function exponent α. Meakin [7] has received far from linear behavior for ln(C(r))
and claimed that α and respectively Dα are strongly dependent on the size of clusters used in
his work without giving any qualitative and numerical evidences. In Meakin’s work the size
of the 3D clusters ranges from 6608 to 15000 particles. We shall examine this statement in
this section of our report.

The radius of gyration Rg (fig. 19) demonstrates essentially the same power law depen-
dency as for the 2D case.

Typical 3D DLA clusters grown from a seed particle fixed in the center of the system for
the case pnn = 1 are shown at the figures (20,21). The figure (21) has a very nice perspective
which shows that the 3D DLA cluster growth preferably happens at the outer parts of the
cluster branches, which leads again to the spacious branch structure, which results in the
small volume occupied by the cluster compared to the volume of the ambient space in which
the cluster resides. To confirm this observation we have computed the cluster density (fig. 22)
and the number of particles (fig. 23) as the functions of the distance from the center of the
cluster for different stages of the cluster growth.

From figure (25) shows that the average coordination number attains constant value in
the limit of large number of particles, just like in the 2D case, though this value is bigger
than the corresponding 2D value. This is explained by the fact that in the three dimensional
lattice each site has bigger number of the nearest neighbor sites.

One useful quantity which could be computed from the simulation data and give important
information on the fractal properties of the object [2] is the projected area P (N) of the object
onto 2D planes. Figure (24) demonstrates that P (N) follows the next power law P (N) ∼ Nγ .
Projected area exponent γ could be calculated via linear fit of the ln(P (N)) versus ln(N).

Figure 18: Double logarithmic plot of the
density-density correlation function C(r) for the
DLA 3D cluster of N = 8000 particles.pnn = 1.
The plot is received via averaging over 10 clusters.

Figure 19: Double logarithmic plot of the ra-
dius of gyration Rg for the DLA 3D cluster of
N = 8000 particles. pnn = 1. The plot is
received via averaging over 10 clusters.
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Figure 20: Typical three dimensional cluster of N = 8257 particles obtained from the Monte Carlo
simulation of DLA growth from the seed particle fixed in the center of the system. pnn = 1.

Figure 21: Typical two dimensional cluster of N = 7762 particles obtained from the Monte Carlo
simulation of DLA growth from the seed particle fixed in the center of the system. pnn = 1.
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Figure 22: The density distribution as the func-
tion of a distance from the center of the 3D DLA
cluster at stages where the cluster has grown to a
size of 500,1000,...,8000 particles. pnn = 1.

Figure 23: The number of particles as the func-
tion of a distance from the center of the 3D DLA
cluster at stages where the cluster has grown to a
size of 500,1000,...,8000 particles. pnn = 1.

Figure 24: The double logarithmic plot of the
projected areas on three mutually perpendicular
planes, calculated during the growth of the 3D
DLA cluster of the total final size N = 7870
particles. pnn = 1.

Figure 25: The average coordination number cal-
culated during the growth of the 3D DLA clus-
ter of the total final size N = 8000 particles.
pnn = 1.

The results for the β, α, Dβ and Dα and values of the projected area exponent are given
in the table (3) for the case pnn = 1. From this data one notices that values of Dβ for different
sizes of the clusters are essentially the same (of course within the statistical error) and oscillate
around 2.5. The values of Dα for different sizes of the clusters are also essentially the same
(within the statistical error) and oscillate around 2.4. And the values of γ are the same for
different sizes of the clusters as well. Our results show that α and, respectively, Dα do not
depend drastically on the size of the clusters used in the current project (in the contrast to
the Meakin’s statement [7]). These results might be due to the larger (better) statistics used
in the present study compared to the one used by Meakin. Based on the aforementioned
results, we come to a conclusion that the density-density correlation function could be also
used (along with Rg) for the calculation of the fractal dimension in the 3D case for clusters
of similar or larger sizes compared to those used in our simulations, of course reasonable
statistics for the averaging is required.
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Radius of gyration exponent, β
N 50% 75% 90% 95% α

8000 0.40056±0.01594 0.39860±0.01833 0.39907± 0.01679 0.39983±0.01680 0.61201±0.06811
9000 0.40458±0.02494 0.40475±0.02526 0.40570± 0.02829 0.40636±0.02894 0.61600±0.03668
10000 0.40563±0.02076 0.40016±0.01736 0.39857± 0.01974 0.39931±0.02258 0.58425±0.08868
11000 0.40124±0.03336 0.39762±0.02085 0.39757± 0.01785 0.39722±0.02002 0.56287±0.04236
12000 0.39605±0.01808 0.39444±0.02144 0.39788± 0.02113 0.39904±0.02017 0.55378±0.07145
13000 0.40480±0.01951 0.39838±0.01771 0.39840± 0.01898 0.40049±0.02044 0.56125±0.06310
14000 0.40435±0.02046 0.40398±0.01694 0.40363± 0.01620 0.40310±0.01563 0.55598±0.06643
15000 0.40051±0.01778 0.40048±0.02798 0.39840± 0.02741 0.39757±0.02221 0.54841±0.07530
N Dβ Dα

8000 2.49652±0.09935 2.50879±0.11540 2.50585± 0.10543 2.50104±0.10509 2.38800±0.06811
9000 2.47169±0.15239 2.47067±0.15416 2.46489± 0.17188 2.46090±0.17526 2.38400±0.03668
10000 2.46529±0.12617 2.49901±0.10845 2.50899± 0.12423 2.50429±0.14161 2.41575±0.08868
11000 2.49227±0.20721 2.51493±0.13187 2.51529± 0.11290 2.51749±0.12685 2.43713±0.04236
12000 2.52494±0.11527 2.53523±0.13784 2.51334± 0.13344 2.50603±0.12670 2.44622±0.07145
13000 2.47038±0.11910 2.51013±0.11159 2.51007± 0.11955 2.49697±0.12741 2.43875±0.06310
14000 2.47310±0.12511 2.47537±0.10380 2.47750± 0.09940 2.48077±0.09616 2.44402±0.06643
15000 2.49683±0.11087 2.49699±0.17449 2.51007± 0.17273 2.51526±0.14048 2.45159±0.07530
N Projected area exponent, γ

8000 0.85676±0.05622 0.85518±0.05796 0.85829± 0.04623 0.86039±0.04550
9000 0.87372±0.04572 0.86251±0.02926 0.86622± 0.02553 0.86956±0.03268
10000 0.86066±0.05705 0.86370±0.02762 0.86015± 0.02105 0.85919±0.02266
11000 0.86287±0.07245 0.86138±0.04181 0.86320± 0.04360 0.86445±0.03482
12000 0.87847±0.04246 0.86522±0.03623 0.86390± 0.02893 0.86393±0.02989
13000 0.86198±0.05392 0.86317±0.03646 0.86629± 0.02850 0.86815±0.02438
14000 0.84946±0.03711 0.85261±0.03292 0.85813± 0.02162 0.86226±0.02274
15000 0.84835±0.03063 0.84973±0.02588 0.85554± 0.02107 0.85917±0.01821

Table 3: Results obtained from the simulation of DLA cluster formation on the three dimensional
simple cubic lattice. pnn = 1. All values of α, β, Dα, Dβ and γ are averaged over 10 clusters.

We also want to notice that in the Meakin’s work [7] the errors for the values of α, β,
Dα, Dβ and γ look suspiciously small which might be due to the possible low quality of the
random number generator (which might gave all the time very close correlated values) used
by Meakin.

In the case of small sticking probabilities the clusters become more dense. For instance,
it could be seen from the figure (55) from the appendix E, which shows the typical 3D DLA
cluster grown from a seed particle fixed in the center of the system in the case of pnn = 0.25.
The results for the computed values of the radius of gyration exponent β, the density-density
correlation function exponent α, the corresponding values of the fractal dimensions Dβ and
Dα and values of the projected area exponent are given in the table (11) from the appendix
E for the case pnn = 0.25. Again in average the values of Dβ oscillate around 2.5 and do not
depend on the cluster size. The values of Dα show the tendency to the negligible increase
with the increase of the cluster size, but giving the magnitudes of the statistical error this is
rather a blurred speculation than a solid fact. The values of γ demonstrate slight dependency
on the value of the sticking probability. For the case of pnn = 0.25 γ oscillates in average
around the value of 0.82, whereas, in the case of pnn = 1 γ oscillates in average around the
value of 0.86.
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3.2 Irreversible DLA Model of Multiple Mobile Clusters Formation

With our first programm we could simulate the growth of a cluster by adding particles to a
lattice site, then performing random walk and finally getting stuck to a fixed particle in the
center of our lattice. This programm was based on the article of Paul Meakin [10]. Now we
want to simulate the motion of many particles on a lattice building clusters as they hit each
other. This model is as one can imagine already close to the physical reality of real particles
performing brownian motion. The algorithm and the measurement of fractal dimension is
inspired by the article [10] also by Paul Meakin.

3.2.1 Simulation Method

In the beginning many particles are distributed randomly to different sites on a twodimen-
sional lattice. The periodic boundary conditions are used. When two particles have a distance
of one lattice unit (nearest neighbors) they stick to each other forming a cluster. (In the fol-
lowing we will not differentiate between single particels and clusters anymore but call them
both clusters. A single particle in our programm means a cluster containing only particle.)
Now the following steps are performed:

1. One of the clusters is picked at random. For the chosen cluster one step in a random
direction is performed.

2. For the new position of the cluster a check for nearest neighbours is performed i.e. for
every particle in the cluster the nearest neighbor sites are checked.

3. If there is a particle of a different cluster at a nearest neighbor position of the first
cluster, both clusters are merged and move as one cluster from now on.

These steps are permanently repeated until there is only one big cluster left in the end and
the programm stops.

The probabilty of clusters getting stuck to each other is highest at the outer region of
each cluster. So for a high number of particles and small enough densities the cluster that is
formed in the end of the programm should show a fractal structure.

3.2.2 Results

Like in the article of Meakin, we tried to calculate the movement of particles on a twodimen-
sional cluster for four different densities.

ρ =
number of particles

number of lattice sites

ρ1 = 0.0625

ρ2 = 0.09375

ρ3 = 0.125

ρ4 = 0.15625

Our programm needed very much RAM to simulate many particles. Thats why we couldn’t
simulate more then 15000 particles. So to reach higher densities instead of increasing the
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particle number we reduced the lattice size. We also made a programm that needed less
RAM and could simulate much more particles but until the moment of completion of this
report it was still very slow. Our results are depicted in Fig.(26,27,28 and 29)

Figure 26: 10 000 particles on a 400 × 400 lattice corresponding to ρ1

Figure 27: 15 000 particles on a 400 × 400 lattice corresponding to ρ2
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Figure 28: 10 000 particles on a 282 × 282 lattice corresponding to ρ3

Figure 29: 10 000 particles on a 252 × 252 lattice corresponding to ρ4

As one can see the particles indeed form clusters with fractal structure. Fig.(30) shows
the self-similarity property of the fractals by showing different zoomed cutouts of Fig.(26).
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Figure 30

Next we want to calculate the fractal dimension from the density-density correlation func-
tions corresponding to Fig.(26,27,28 and 29). The results are depicted in Fig.(31)
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Figure 31: density-density correlation functions obtained for different particle concentrations

These results are an average over 10 simulations. The straight line is a fit of the linear
part of the density-density correlation function. The slope of the fitted line yields us the
fractal dimension Dα of the fractals, hence:

C(r) ≈ r−α (18)

⇔ ln (C(r)) = −α · ln(r) (19)

⇒ Dα = d− α (20)

Our results for Dα can be seen in table 4. They are consistent with the results obtained by
Meakin in [10].

Density Slope of C(r) Fractal dimension

ρ α Dα

ρ1 = 0.0625 0,48 1,52
ρ2 = 0.09375 0,43 1,57
ρ3 = 0.125 0,42 1,58
ρ4 = 0.15625 0,40 1,60

Table 4
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3.3 Adaptive Growth Model

3.3.1 Simulation Method

In this section we are going to investigate an adaptive network growth. Adaptive network
growth usually takes place in systems which do not grow indefinitely but evolves towards
a steady state regime by means of a addition and deletion of particles in the cluster. This
ability to remove or add particles governs the adaptive nature of the cluster.

We will follow the simulation method of the adaptive network growth based on the Eden
model [11] and implemented in one of the Meakin’s work [12]. The original Eden model was
initially developed to study the growth of biological cell colonies. In this original model parti-
cles are not allowed to be removed from the cluster, consequently the cluster could only grow
till there are left available particles in the system. The growth process is simulated via adding
new particles at randomly selected unoccupied sites on the perimeter of a growing cluster with
probabilities that are proportional to the number of occupied nearest neighbors. Such an ap-
proach for the growth process leads to the formation of dense structures (appendix F fig. 56)
with rough (self-affine) surfaces.

In order to allow for the steady state to be possible an additional variable σi (counter)
is associated to each particle in the cluster. We will call this variable a ”score”. After an
unoccupied site on the perimeter of the cluster is chosen and a new particle is introduced
at this site, the path between newly added particle and the seed particle in the center of
the cluster is computed. Then the score σi of each particle in this path is increased by an
amount δ1:

δ1 =
1

(1 + l)η
, (21)

where l is the length of the path and η is a parameter of the model. Once the score for the
particles in the path was increased the score associated with all particles is decreased by an
amount δ2:

δ2 =
1

Nm
, (22)

where Nm is a parameter of the model. If the score σi associated with the i-th particle
becomes less than zero, then this particle is removed from the cluster.

In such way the score provides a measure of the degree of participation of the site (occupied
by a particle from the cluster) in the growth process and also a measure of ”how old is the
particle”.

There are basically two options to calculate the path between the newly added particle
and the seed particle. The first way it to compute the shortest path. For the computation
of the shortest path between two points of the lattice one could use, for example, the Lee
algorithm. According to the Lee algorithm one starts with the initial site and labels all its
nearest neighbors with the number (which is distance between them and initial site), after
that one proceeds with the nearest neighbors of already labeled sites and label them again
with the number which is distance from this newly labeled sites to the initial one. And one
proceeds in such manner till the final destination site will be reached. The second way is
what follows. After a new particle is added one could randomly select one of the occupied
nearest neighbor sites and assign it as a ”parent” site for the newly added particle. In such
way a random path between the newly added particle and the seed particle is built up. We
have examined both options. In the case of the determining the path between the newly
added particle and the seed particle as the the shortest path between them on the lattice, one
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gets strongly correlated structure of the clusters (appendix F fig. 57). This is why we have
used the second way of determining a random path in the further simulations. Interestingly,
Meaking has mentioned in his paper [12] that he has used the shortest path between newly
added particles and a seed particle in his simulations of the adaptive growth model based on
the DLA model.

3.3.2 Results

The typical cluster generated using the aforementioned method using η = 1 andNm = 102400
is shown at the figure (32). We denote the number of particles added to the cluster as t. The
total number of particles added to the cluster depicted at the figure (32) is t = 2.5 × 105.
The number t of added particles could be used as the measure of the elapsed time. Most of
the added particles were subsequently removed and the cluster reaches a steady state regime
at which the number of particles in the cluster oscillates around the value of ≈ 7400 particles.
The cluster has looser structure towards the outer regions and denser structure towards its
center. This is due to that particles which have higher score are located in the inner part of
the cluster. To demonstrate this we have depicted particles with different values of the score
with differen colors (fig. 33). Particles which have the highest score (≥ 250) have magenta
color, particles which have the score in the range of values between 70 and 250 are red and
so on. The particles with the smaller score are situated on the branches comprised of the
particles with the large score. In order to illustrate the cluster structure more clearly we
have plotted only those particle which have the score ≥ 100 (fig. 34), and only those particle
which have the score ≥ 10 (fig. 35), and only those ones with the score ≥ 1 and score ≥ 0.1
(figures 36 and 37 respectively).

Figure (38) shows the evolution for the two clusters at η = 1. In the begging the value of
Nm is fixed at the value of 102400 for the first cluster (curve A), and at value of 1600 for the
second cluster (curve B). At the early stages of growth the logarithm of the cluster size S(t)
increases linearly as a function of ln(t). Later the steady state is reached at which the cluster
size S(t) oscillates around a constant value. After 2.5 × 105 particles were added the value
of Nm for the first cluster is switched to 1600 and for the second cluster to 102400 and the
clusters are let to evaluate for another 7.5 × 105 steps. Figure (38) illustrates the adaptive
nature of the current model. After the value of Nm was changed for the second cluster it quite
rapidly reaches a new steady state, which is the same as for the first cluster for t ≤ 2.5×105.
And the first cluster after the change of the Nm also tends to attain a new steady state which
resembles the steady state of the second cluster before the change of Nm.

Figures (39) and (40) illustrate how different values of the Nm influence on the steady
state value of the cluster size S(∞) for the cases of η = 0 and η = 2, respectively. We have
also plotted ln(S(∞)) versus ln(Nm) for the case η = 2 (fig. 41). This figure shows that in
the steady state the cluster size follows the next power law:

S(∞) ∼ Nν
m. (23)

We have estimated the value of ν for the case η = 2 which yields the value of 0.55361 ±0.0132
which is quite close to the one received by Meakin [12].

Comparing figures (42) and (43) one could notice that the model parameters η and Nm

strongly influence not only the steady state size of the cluster, but also its structure and
density.
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Figure 32: Typical cluster of the adaptive growth model generated with η = 1 and Nm = 102400
after the addition of t = 2.5 × 105 particles.

Figure 33: The same cluster as the figure (32). Different colors of the particles stand for the different
values of the score associated with the corresponding particle.
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Figure 34: The same cluster as at the figure (32).
Only those particles are shown which have the
score ≥ 100. The seed particle is not depicted.

Figure 35: The same cluster as at the figure (32).
Only those particles are shown which have the
score ≥ 10. The seed particle is not depicted.

Figure 36: The same cluster as at the figure (32).
Only those particles are shown which have the
score ≥ 1. The seed particle is not depicted.

Figure 37: The same cluster as at the figure (32).
Only those particles are shown which have the
score ≥ 0.1. The seed particle is not depicted.

28



Figure 38: An illustration of the adaptive nature of the model. The evolution of the cluster size is
shown for two simulations. In the first simulation (A) the value of the parameter Nm is switch from
102400 to 1600 at t = 2.5 × 105. In the second simulation (B) Nm is switched from 1600 to 102400
at t = 2.5 × 105. η = 1.

Figure 39: The evolution of the size of the cluster as the function of added particles to the cluster
for different values of Nm. η = 0. The total number of the particles added to the cluster at the end
of simulation is t = 2.5× 105.

29



Figure 40: The evolution of the size of the cluster as the function of added particles to the cluster
for different values of Nm. η = 2. The total number of the particles added to the cluster at the end
of simulation is t = 2.5× 105.

Figure 41: Dependence of the ln(S(∞)) on the ln(Nm) for clusters at the latest stage of formation
reached in the current study. η = 2.
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Figure 42: Typical cluster of the adaptive growth
model generated with η = 0 and Nm = 2560 after
the addition of t = 2.5 × 105 particles.

Figure 43: Typical cluster of the adaptive growth
model generated with η = 2 and Nm = 6550000
after the addition of t = 2.5 × 105 particles..

4 Conclusions

During the work under the current project we have gained a basic knowledge of fractal struc-
tures and possible physical systems where the fractal formation might occur. In order to
underline the relevance of the problem, a brief survey of the literature on the subject is made.

By means of the Monte Carlo method we have studied the DLA model of the irreversible
fractal growth and the Eden model for the adaptive network formation. For the DLA model
we have investigated the two- and three-dimensional cluster growth from a seed particle fixed
in the center of a system for the different values of the sticking probabilities. The effect of
the sticking probability is examined over the wide range of its values at the first and second
nearest neighbor sites. More over, we have also studied the DLA model for the fractal growth
in the case of multiple mobile clusters.

We have examined two methods of the computing of the fractal dimension. The first
method is based on the computation of the radius of gyration and the second method is due
to the computation of the density-density correlations. We have shown that both methods
give very close results. For the computation of the critical exponents we have created our
own C++ program which is able to fit the data with a polynomial of any desired degree.

We have investigated the adaptive nature of the steady state regime of the adaptive
networks formation. And pointed out the main dependencies on the model parameters.

Most of the results from the papers ([7],[10],[12]) are nicely reproduced. Some of the results
are even outperformed. We have demonstrated how the averaging over several realizations of
the single simulation data allows for the decrease of the random fluctuations.

One the most challenging problems from the programming point of view was the proper
processing of a large data arrays for the big numbers of particles in order to reduce the
computational time. And we have successfully coped with this task.

We have gone beyond the scope of the offered tasks for the project and proposed reference
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literature. First of all we have used much larger statistics for the averaging compared to the
([7],[10],[12]). We have also shown that in the case of the adaptive network formation (via
Eden model) strongly correlated fractal structure is obtained if the path between a newly
added particle and the seed particle is defined as the shortest path. Next, in the case of
the 3D DLA cluster growth we have computed the density-density correlation function and
the corresponding fractal dimensions. We have shown that in this case the density-density
correlation function does not depend strongly on the size of the cluster and consequently gives
reasonable values for the fractal dimensions.
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A Additional data from 2D DLA clusters simulation (pnn = 1)

Figure 44: Typical two dimensional cluster of N = 12000 particles obtained from the Monte Carlo
simulation of DLA growth from the seed particle fixed in the center of the system. Sticking probability
at the nearest neighbor sites pnn is 1.
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Figure 45: Computed via linear fit of ln(Rg(N)) over the last 95% of particles added to the clusters

Figure 46
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B Additional data from 2D DLA clusters simulation (pnn < 1, psnn = 0)

Figure 47: Computed via linear fit of ln(Rg(N)) over the last 95% of particles added to the clusters

Figure 48
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Density-density
correlation

Radius of gyration exponent, β function Coordination
pnn N 50% 75% 90% 95% exponent, α number

0.1 12000 0.5811±0.0404 0.5746±0.0287 0.5694±0.0236 0.5657± 0.0201 0.2761±0.0528 2.8144±0.0142
0.1 20000 0.5867±0.0371 0.582±0.041 0.5755±0.0309 0.5714± 0.0298 0.2886±0.0454 2.8138±0.0122
0.25 12000 0.577±0.0297 0.5784±0.0378 0.58±0.038 0.5787± 0.0364 0.2845±0.0544 2.586±0.0163
0.25 15000 0.5832±0.0132 0.58±0.019 0.58±0.023 0.579±0.022 0.3176±0.0409 2.592±0.012
0.25 17000 0.5763±0.0133 0.5801±0.0146 0.5801±0.0126 0.5791±0.0134 0.2943±0.0503 2.59±0.01
0.25 20000 0.5804±0.0351 0.5803±0.0299 0.5822±0.0191 0.5829± 0.0182 0.3±0.02 2.5903±0.0083
0.4 12000 0.5824±0.023 0.585±0.0245 0.5798±0.0284 0.5774± 0.0254 0.3185±0.0782 2.4606±0.0173
0.4 20000 0.5837±0.0257 0.5862±0.0339 0.5865±0.0271 0.5851± 0.0219 0.3081±0.0285 2.4641±0.0086
0.7 12000 0.583±0.021 0.5815±0.0289 0.5806±0.0288 0.5808± 0.0278 0.3031±0.0486 2.2967±0.0122

Table 5: Results obtained from the simulation of DLA cluster formation on two dimensional simple
cubic lattice with a sticking probability at the nearest neighbor sites pnn < 1 and at the second nearest
neighbor sites psnn = 0. All values of α, β and coordination number are averaged over 10 clusters.

Dβ
pnn N 50% 75% 90% 95% Dα

0.1 12000 1.7209±0.1196 1.74±0.087 1.7562±0.0726 1.7678±0.0629 1.7239±0.0528
0.1 20000 1.7044±0.1077 1.719±0.121 1.7376±0.0932 1.7501±0.0913 1.7116±0.0454
0.25 12000 1.7333±0.0891 1.729±0.113 1.7244±0.1129 1.7279±0.1085 1.7155±0.0544
0.25 15000 1.7147±0.0396 1.724±0.055 1.7242±0.0738 1.7269±0.0657 1.6824±0.0409
0.25 17000 1.74±0.04 1.7239±0.0433 1.7238±0.0373 1.7268±0.0398 1.7057±0.0503
0.25 20000 1.723±0.104 1.7234±0.0889 1.7175±0.0563 1.7156±0.0535 1.7±0.02
0.4 12000 1.7169±0.0679 1.7095±0.0717 1.7247±0.0845 1.732±0.076 1.6815±0.0782
0.4 20000 1.7131±0.0755 1.7059±0.0987 1.7051±0.0787 1.709±0.064 1.6919±0.0285
0.7 12000 1.715±0.061 1.7196±0.0854 1.7224±0.0855 1.7219±0.0824 1.6969±0.0486

Table 6: Fractal dimension computed from the radius of gyration and density-density correlation
function given in table (5).
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C Additional data from 2D DLA clusters simulation (pnn = 0, psnn 6= 0)

Density-density
correlation

Radius of gyration exponent, β function
psnn N 50% 75% 90% 95% exponent, α

1 12000 0.579±0.031 0.58±0.025 0.5817±0.0226 0.5818± 0.0211 0.3021±0.0235
1 15000 0.5923±0.0458 0.5918±0.0264 0.59±0.03 0.5889± 0.0274 0.3174±0.0449
1 17000 0.58±0.03 0.5863±0.0227 0.5896±0.0269 0.5906±0.0232 0.317±0.023
1 20000 0.5887±0.0243 0.5877±0.0238 0.5847±0.0193 0.5821±0.0185 0.3257±0.0346
0.7 12000 0.5936±0.0241 0.595±0.025 0.5949±0.0218 0.5921±0.0205 0.319±0.026
0.25 12000 0.5832±0.0355 0.5895±0.0174 0.5864±0.0195 0.5832±0.0218 0.3197±0.0472
0.1 12000 0.5839±0.0257 0.5855±0.0159 0.584±0.018 0.5817±0.0239 0.3025±0.0497
0.1 15000 0.5837±0.0327 0.578±0.043 0.573±0.041 0.5714±0.0383 0.2905±0.0494
0.1 17000 0.5881±0.0291 0.5862±0.0297 0.5783±0.0253 0.5751±0.0203 0.2896±0.0292
0.1 20000 0.5773±0.0472 0.5774±0.0319 0.5774±0.0243 0.58±0.02 0.2919±0.0305

Table 7: Results obtained from the simulation of DLA cluster formation on two dimensional simple
cubic lattice with a sticking probability at the nearest neighbor sites pnn = 0 and at the second nearest
neighbor sites psnn 6= 0. All values of α, β and coordination number are averaged over 10 clusters.

Dβ
psnn N 50% 75% 90% 95% Dα

1 12000 1.727±0.091 1.7248±0.0742 1.7191±0.0668 1.7189±0.0623 1.6979±0.0235
1 15000 1.6883±0.1305 1.6897±0.0753 1.6979±0.0868 1.698±0.079 1.6826±0.0449
1 17000 1.7107±0.0877 1.7057±0.0661 1.696±0.0773 1.6936±0.0664 1.683±0.025
1 20000 1.7±0.07 1.7016±0.0688 1.7104±0.0565 1.7178± 0.0545 1.6743±0.0346
0.7 12000 1.6847±0.0685 1.68±0.07 1.681±0.062 1.689± 0.059 1.681±0.026
0.25 12000 1.7146±0.1043 1.7±0.05 1.7053±0.0567 1.7147±0.0642 1.6803±0.0472
0.1 12000 1.7126±0.0753 1.7078±0.0463 1.7124±0.0522 1.7192±0.0708 1.6975±0.0497
0.1 15000 1.713±0.096 1.7315±0.1288 1.7463±0.1252 1.7501±0.1172 1.7095±0.0494
0.1 17000 1.7004±0.0843 1.7058±0.0866 1.7292±0.0755 1.73886±0.0612 1.7105±0.0292
0.1 20000 1.7322±0.1416 1.7318±0.0957 1.7319±0.0728 1.7301±0.0605 1.7081±0.0305

Table 8: Fractal dimension computed from the radius of gyration and density-density correlation
function given in table (7).
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D Additional data from 2D DLA clusters simulation (pnn 6= 0, psnn 6= 0)

Density-density
correlation

Radius of gyration exponent, β function Coordination
pnn psnn N 50% 75% 90% 95% exponent, α number

0.1 0.1 12000 0.5885±0.0341 0.5835±0.0354 0.5806±0.0276 0.5797±0.0316 0.3034±0.0415 1.6446±0.0257
0.1 1 12000 0.5906±0.0367 0.5918±0.0362 0.5935±0.0423 0.59±0.04 0.3237±0.0355 0.0809±0.0058
1 0.1 12000 0.5737±0.0349 0.5707±0.0281 0.5722±0.0207 0.5725±0.0176 0.2964±0.0443 1.9856±0.0065
1 1 12000 0.591±0.023 0.5892±0.0228 0.59±0.02 0.5898±0.0122 0.3257±0.0339 0.5902±0.0139
0.7 0.7 12000 0.5747±0.0312 0.5732±0.0333 0.5704±0.0282 0.5695±0.0262 0.3112±0.0299 0.832±0.015
0.1 0.1 15000 0.5734±0.0424 0.5787±0.0393 0.583±0.026 0.5837±0.0195 0.3198±0.0462 1.6469±0.0213
0.1 1 15000 0.5827±0.0261 0.5828±0.0206 0.5812±0.0237 0.58±0.03 0.32±0.04 0.0787±0.0041
1 0.1 15000 0.5823±0.0245 0.5827±0.0259 0.581±0.017 0.5826±0.0193 0.3119±0.0439 1.9825±0.0108
1 1 15000 0.6005±0.0438 0.5949±0.0492 0.5913±0.0425 0.5895±0.0357 0.326±0.028 0.5854±0.0183
0.7 0.7 15000 0.5808±0.0266 0.5812±0.0226 0.5856±0.029 0.587±0.0277 0.3246±0.0169 0.8164±0.0119

Table 9: Results obtained from the simulation of DLA cluster formation on two dimensional simple
cubic lattice with a sticking probability at the nearest neighbor sites pnn 6= 0 and at the second nearest
neighbor sites psnn 6= 0. All values of α, β and coordination number are averaged over 10 clusters.

Dβ
pnn psnn N 50% 75% 90% 95% Dα

0.1 0.1 12000 1.6993±0.0984 1.714±0.104 1.7224±0.0819 1.725±0.094 1.6966±0.0415
0.1 1 12000 1.6933±0.1053 1.6899±0.1035 1.69±0.12 1.6891±0.1131 1.6764±0.0355
1 0.1 12000 1.743±0.106 1.7521±0.0863 1.7476±0.0631 1.7468±0.0536 1.7036±0.0443
1 1 12000 1.6912±0.0658 1.6973±0.0656 1.695±0.049 1.6957±0.0352 1.6743±0.0339
0.7 0.7 12000 1.74±0.09 1.7447±0.1014 1.7531±0.0867 1.7558±0.0807 1.6889±0.0299
0.1 0.1 15000 1.7439±0.1289 1.728±0.117 1.715±0.075 1.7132±0.0572 1.6802±0.0462
0.1 1 15000 1.7162±0.0769 1.7158±0.0606 1.7206±0.0702 1.7242±0.0954 1.68±0.04
1 0.1 15000 1.7175±0.0723 1.7162±0.0764 1.7213±0.0518 1.7164±0.0569 1.6881±0.0439
1 1 15000 1.6654±0.1213 1.6811±0.1391 1.6912±0.1216 1.6963±0.1027 1.6741±0.0278
0.7 0.7 15000 1.722±0.079 1.7205±0.0669 1.7076±0.0845 1.7032±0.0802 1.6754±0.0169

Table 10: Fractal dimension computed from the radius of gyration and density-density correlation
function given in table (9).
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Figure 49: Typical two dimensional cluster of N = 12000 particles obtained from the Monte Carlo
simulation of DLA growth from the seed particle fixed in the center of the system. pnn = 1 and
psnn = 1.

Figure 50: Typical two dimensional cluster of N = 12000 particles obtained from the Monte Carlo
simulation of DLA growth from the seed particle fixed in the center of the system. pnn = 0.1 and
psnn = 0.1.
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E Additional data from 3D DLA clusters simulation (pnn = 1
and pnn = 0.25)

Figure 51: Computed via linear fit of ln(Rg(N)) over the last 95% of particles added to the clusters

Figure 52
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Figure 53: Computed via linear fit of ln(Rg(N)) over the last 95% of particles added to the clusters

Figure 54
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Radius of gyration exponent, β
N 50% 75% 90% 95% α

9000 0.39029±0.04002 0.39374±0.03620 0.39335± 0.03034 0.39151±0.02848 0.66028±0.08556
10000 0.39426±0.02018 0.39092±0.01921 0.38710± 0.01935 0.38511±0.02273 0.66641±0.06377
11000 0.38994±0.01460 0.38961±0.01775 0.39084± 0.02221 0.39161±0.02410 0.64082±0.05811
12000 0.39667±0.02806 0.39644±0.03612 0.39723± 0.03090 0.39669±0.02724 0.63110±0.05904
13000 0.39163±0.02191 0.39208±0.02593 0.39244± 0.02250 0.39327±0.01849 0.60633±0.09909
14000 0.39538±0.02546 0.39750±0.01449 0.39578± 0.01539 0.39403±0.01817 0.61198±0.06724
15000 0.39451±0.02624 0.39541±0.02688 0.39570± 0.02054 0.39478±0.02089 0.58598±0.05896
N Dβ Dα

9000 2.56222±0.26276 2.53973±0.23347 2.54227± 0.19609 2.55422±0.18580 2.33972±0.08556
10000 2.53638±0.12982 2.55804±0.12573 2.58333± 0.12913 2.59664±0.15326 2.33359±0.06377
11000 2.56450±0.09602 2.56666±0.11697 2.55859± 0.14536 2.55354±0.15711 2.35918±0.05811
12000 2.52097±0.17833 2.52243±0.22979 2.51742± 0.19583 2.52089±0.17314 2.36890±0.05904
13000 2.55343±0.14285 2.55048±0.16867 2.54815± 0.14613 2.54276±0.11955 2.39367±0.09909
14000 2.52920±0.16286 2.51572±0.09171 2.52665± 0.09825 2.53789±0.11703 2.38802±0.06724
15000 2.53480±0.16860 2.52901±0.17195 2.52714± 0.13118 2.53303±0.13407 2.41402±0.05896
N Projected area exponent, γ

9000 0.81899±0.06121 0.82145±0.06883 0.81605± 0.05254 0.81731±0.04727
10000 0.81726±0.07444 0.82205±0.08222 0.82276± 0.06070 0.82281±0.05409
11000 0.82666±0.06412 0.82850±0.05630 0.82372± 0.05283 0.81864±0.04654
12000 0.83658±0.05679 0.83160±0.04495 0.82980± 0.03346 0.83187±0.02418
13000 0.83007±0.06207 0.83368±0.03860 0.83009± 0.03560 0.83075±0.02661
14000 0.82711±0.07154 0.83435±0.05726 0.83276± 0.04602 0.83062±0.04066
15000 0.82245±0.02484 0.81742±0.02703 0.82045± 0.02901 0.82108±0.02702

Table 11: Results obtained from the simulation of DLA cluster formation on the three dimensional
simple cubic lattice. pnn = 0.25. All values of α, β, Dα, Dβ and γ are averaged over 10 clusters.

Figure 55: Typical three dimensional cluster of N = 14000 particles obtained from the Monte Carlo
simulation of DLA growth from the seed particle fixed in the center of the system. pnn = 0.25 and
psnn = 0.
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F Additional data from adaptive network simulation

Figure 56: Typical Eden cluster of N = 8000 particles. In the original Eden model [11] particles
are not deleted from the cluster. New particles are added on the perimeter of the cluster with the
probability proportional to the number of the nearest neighbor sites already occupied by the particles
from the cluster.

Figure 57: Adaptive network cluster formed after 2.5 × 105 particles were added to the cluster. This
figure demonstrates that the condition for the score to be increased only for particles in the shortest
path between newly added particle and the seed particle in the center imposes substantial non-random
correlations on the entire structure of the cluster.
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