Nuclear Physics Spring Meeting, Cologne March 8-12, 2004

H. Rohdjeß, ISKP Uni-Bonn für die EDDA-Kollaboration (Bonn, Hamburg, Jülich)

$$(\stackrel{\bullet}{p}) \stackrel{(\bullet)}{p} \longrightarrow p p T_p = 0.25 \dots 2.6 \text{ GeV}$$

$$\frac{d \sigma}{d \Omega} A_N A_{NN} A_{SS} A_{SL}$$

Experimental Technique

internal experiment

• excitation functions

Phase Shift Analysis (PSA)

partial wave decomposition

$$S_J = e^{2i\delta_J} : \vec{J} = \vec{L} + \vec{S}$$

constraints

e.g.: L > L_{max} : OPE

➡ predicitive power !!

e.g. VPI (SAID) R. Arndt et al.

 $T_p \in 0-3 \text{ GeV}$: 23000 / 12000 pp / np data points

Bystricky, Lechanoine-Leluc, Lehar Eur. Phys. J. C4, 607 (1998) Arndt, Strakovsky, Workman, Phys. Rev. C62, 034005 (2000)

EDDA@COSY: Detector

Radiaton Damage of CH₂ - Targets

Normalization

relative:

e (p, e) p

 $R_{PIN} \propto \sigma_{ROSENBLUTH}$

Simon et al. (LAMPF), Phys. Rev. C48, 662 (1993)

updated analysis of unpolarized data: $\frac{d\sigma}{d\Omega}$

- increased statistical precision
- reduced contribution from pC scattering
- correction for radiation damage of CH₂-targets
- Iarger momentum range

Dibaryons

color singlet states

- numerous theoretical predictions for l=1 ,S=0 : $W_R \approx 2.1 \dots 2.7 \text{ GeV}$
 - Γ = 10...150 MeV

no experimental evidence !

Data Taking with pp

Results: Analyzing Power

M.Altmeier et al. Phys. Rev. Lett. 85, 1819 (2000)

p**p**

 25×10^6 Events $\Delta \theta = 4^\circ$ $\Delta p = 30$ MeV/c

Spinkorrelationsparameter

Spinkorrelationsparameter

Spinkorrelationsparameter

Amplitude Reconstruction

Helicity-amplitudes:

$$\phi_{k} = |\phi_{k}| e^{i\alpha_{k}}$$

Observables: e.g.

 $A_{\rm SS}\sigma_0 = |\phi_1| |\phi_2| \cos(\alpha_1 - \alpha_2) + |\phi_3| |\phi_4| \cos(\alpha_3 - \alpha_4)$

F.Bauer et al., Phys. Rev. Lett. 90, 142301 (2003)

resonances short-range

High Energy >> 10 GeV

- Regge-theory
- pQCD (s,t → ∞)

d σ /dt \propto F(θ)/s¹⁰

⇒ ^A_N = 0

23

Meson Exchange Model

 $d\sigma$ / $d\Omega$

AN

80

The

EDDA

Collaboration

Spokesmen: J. Bisplinghoff, F. Hinterberger and W. Scobel,

M. Altmeier, F. Bauer, J. Bisplinghoff, K. Büßer, M. Busch,
T. Colberg, L. Demirörs, C. Dahl, F. Dohrmann, P.D. Eversheim,
O. Eyser, O. Felden, R. Gebel, M. Glende, J. Greiff, R. Groß-Hardt,
F. Hinterberger, R. Jahn, E. Jonas, H. Krause, R. Langkau,
C. Lehmann, T. Lindemann, J. Lindlein R. Maier, A. Meinerzhagen,
O. Nähle, C. Pauli, D. Prasuhn, H. Rohdjeß, D. Rosendaal,
P. von Rossen, N. Schirm, W. Scobel, H.J. Trelle, K. Ulbrich, E. Weise,
A. Wellinghausen, T. Wolf, K. Woller, R. Ziegler

Institut für Strahlen- und Kernphysik, Universität Bonn,I. Institut für Experimentalphysik, Universität Hamburg,Institut für Kernphysik, Forschungszentrum Jülich.

Gefördert durch das BMBF and Forschungszentrum Jülich