Nucleon-Nucleon Elastic Scattering

Heiko Rohdjeß HISKP, Universität Bonn

•	Introduction - Formalism, Observables - Phase Shift Analysis
•	Status of Experiments - Database (recent additions)
•	Status of Theory
•	Where can COSY contribute?

helicity-amplitudes:

 $\phi_1 = \langle ++|T|++\rangle \ \phi_2 = \langle ++|T|- \ / \ \varphi_3 = \langle -+|T| - \ / \ \varphi_3 = \langle -+|T| - \ / \ \varphi_4 = \langle -+|T| - \ / \ \varphi_5 = \langle -+|T| - \ / \ \varphi_5 = \langle -+|T| - \ / \ \varphi_6 = \langle -+|T| - \ / \ \varphi_$

Isospin: $T(p^{p} \rightarrow p^{p}) \equiv T(n^{p} \rightarrow n^{p}) \equiv \pm 1$ $T(p^{n} \rightarrow n^{p}) = T(n^{p} \rightarrow p^{n}) = \frac{1}{2}(T_{1} + T_{0})$ $T(p^{n} \rightarrow n^{p}) = T(n^{p} \rightarrow p^{n}) = \frac{1}{2}(T_{1} - T_{0})$

Pauli-principle

Isospin0

$$\begin{aligned}
& \text{Isospin0} \\
\phi_1(\pi - \theta) &= -\phi_1(\theta) \\
\phi_2(\pi - \theta) &= -\phi_2(\theta) \\
\phi_3(\pi - \theta) &= \phi_4(\theta) \\
\phi_5(\pi - \theta) &= \phi_5(\theta)
\end{aligned}$$
Isospin1

$$\begin{aligned}
& \phi_1(\pi - \theta) &= \phi_1(\theta) \\
& \phi_2(\pi - \theta) &= \phi_2(\theta) \\
& \phi_3(\pi - \theta) &= -\phi_4(\theta) \\
& \phi_5(\pi - \theta) &= -\phi_5(\theta)
\end{aligned}$$

Phase-Shift Analysis (PSA)

partial-wave decomposition

 $S_J = e^{2i\delta_J}; \quad \vec{J} = \vec{L} + \vec{S}$

include known physics

L > L_{max} : OPE Coulomb

```
inelasticities for T > 300 MeV
```

 δ_{j} complex

predicitive power !!

VPI/GWU (SAID) pp : 0-3.0 GeV : 24 000 data points np : 0-1.3 GeV : 13 000 data points

- Saclay-Geneva pp : mainly fixed energy
- Hiroshima pp/np : fixed energies 0-11 / 0.5-1.1GeV
- Nijmegen pp/np : 0-350 / 0-500 MeV

Recent Additions	to the NN-Database
internal	external
 PINTEX @ IUCF Cooler pp 200-450 MeV storage cell EDDA @ COSY pp 300-2500 MeV DAQ during acceleration 	 polarized np @ PSI np 260-535 MeV NN program at Saturne II np 300-1150 MeV pp 600-2700 MeV
$\frac{d\sigma}{d\Omega} = \frac{A_N A_{NN} A_{SL} A_{SS} A_{LL}}{A_{NN} A_{NN} A_{SL} A_{SS} A_{LL}}$	double scattering observables total cross sections ^o tot A _N A _{ij} D _{ij} K _{ij} N _{ijk}

C14

SH

neutron detector

NC

VETO

Bystricky, Lechanoine-Leluc, Lehar Eur. Phys. J. C4, 607 (1998) Arndt, Strakovsky, Workman, Phys. Rev. C62, 034005 (2000)

Meson Production

Spinkorrelationsparameter

What should we measure at COSY?

To resolve remaining ambiguities:

measure triple-spin observables!

Double-scattering experiments.

very challenging!

color singlet states

numerous theoretical predictions

for I=1 , S=0 : $W_{\rm B} \approx 2.1 \dots 2.7 \text{ GeV}$

 $\Gamma = 10...150 \text{ MeV}$

no experimental evidence !

Heiko Rohdjess, HISKP Uni Bonn

double-spin observables: T > 1.1GeV :

quasi-free pN scattering

LiD -targets at Saturne II

Quasi-Free Meson Production

Spectator-proton detection @Anke

deuterium-cluster target

Talks: I. Lehmann pn → dωR. SchleichertF. RathmannSession onpn-induced reactions

chiral perturbation theory

● pQCD (s,t → ∞)

 $d\sigma/dt \propto F(\theta)/s^{10}$

$$\phi_5 = <++|T|+-> = 0$$

 \Rightarrow $A_{N} = 0$

25

Conclusion

Status of exp. data / PSA

- pp : up to 1.2 GeV / 2.5 GeV /)
- np : up to 1.1 GeV
- Dibaryons? (T=1, S=0)

strong coupling to NN

Theory

Effort needed for T > 1GeV

What can be done at COSY?

pp: triple-spin observables

polarized np for T > 1.1 GeV

