ALICE: Recent results and future plans

Harald Appelshäuser Goethe-Universität Frankfurt

Structure of Matter

- the elementary building blocks of matter are quarks and gluons
- subsequent heating of matter releases new degrees of freedom
- what is the nature of *elementary* matter where the relevant degrees of freedom are quarks and gluons?

QCD phase diagram

QCD phase diagram

Lattice QCD (μ_B = 0): - deconfinement and chiral symmetry restoration at T_c ≈ 175 MeV

Quark-Gluon Plasma

experimental program

- CERN-SPS (since 1986): Heavy ions on *fixed targets* √s_{NN} ≈ 20 GeV
- BNL-RHIC (since 2000): Heavy-ion collider $\sqrt{s_{NN}} = 200 \text{ GeV}$
- CERN-LHC (since 2010) Heavy-ion collider $vs_{NN} = 2.76$ TeV (5.1 TeV in 2015)
- ightarrow detailed characterization of the QGP properties

LHC

- pp (√s = 8 TeV)
- pPb ($\sqrt{s_{NN}}$ = 5 TeV)
- Pb-Pb ($\sqrt{s_{NN}}$ = 2.76 TeV)
- 4 large experiments
- ALICE dedicated for heavy-ion collisions
- significant HI program conducted by ATLAS and CMS

ALICE TPC

Pb-Pb event display

ALICE TPC performance in Run 1

- momentum resolution: $\sigma(p_T)/p_T \le 3.5\%$ at 50 GeV/c
- dE/dx resolution 7.6% in central Pb-Pb
- 65 of 77 ALICE papers based on TPC data
- readout rate ~300 Hz in central Pb-Pb, limited by electronics band width
 → will be increased by factor 2 in Run2

Heavy-ion collisions at the LHC

- Day 1: The fireball produced at the LHC is the largest, densest, and longest lived
- Perfect laboratory for detailed QGP studies

 $\left< dN_{_{Ch}} / d\eta \right>^{^{1/3}}$

Heavy-ion collisions at the LHC

1974

VOLUME 33, NUMBER 23

PHYSICAL REVIEW LETTERS

Experimental Observation of a Heavy Particle J⁺

J. J. Aubert, U. Becker, P. J. Biggs, J. Burger, M. Chen, G. Everhart, P. Goldhagen, J. Leong, T. McCorriston, T. G. Rhoades, M. Rohde, Samuel C. C. Ting, and Sau Lan Wu Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

Y. Y. Lee Brookhaven National Laboratory, Upton, New York 11973 (Received 12 November 1974)

We report the observation of a heavy particle J, with mass m = 3.1 GeV and width approximately zero. The observation was made from the reaction $p + \text{Be} \rightarrow e^+ + e^- + x$ by measuring the e^+e^- mass spectrum with a precise pair spectrometer at the Brookhaven National Laboratory's 30-GeV alternating-gradient synchrotron.

Discovery of a Narrow Resonance in e^+e^- Annihilation*

J.-E. Augustin, † A. M. Boyarski, M. Breidenbach, F. Bulos, J. T. Dakin, G. J. Feldman, G. E. Fischer, D. Fryberger, G. Hanson, B. Jean-Marie, † R. R. Larsen, V. Lüth, H. L. Lynch, D. Lyon, C. C. Morehouse, J. M. Paterson, M. L. Perl, <u>B. Richter</u>, P. Rapidis, R. F. Schwitters, W. M. Tanenbaum, and F. Vannuccit

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

and

G. S. Abrams, D. Briggs, W. Chinowsky, C. E. Friedberg, G. Goldhaber, R. J. Hollebeek, J. A. Kadyk, B. Lulu, F. Pierre, & G. H. Trilling, J. S. Whitaker, J. Wiss, and J. E. Zipse Lawrence Berkeley Laboratory and Department of Physics, University of California, Berkeley, California 94720 (Received 13 November 1974)

We have observed a very sharp peak in the cross section for $e^+e^- \rightarrow \text{hadrons}$, e^+e^- , and possibly $\mu^+\mu^-$ at a center-of-mass energy of 3.105 ± 0.003 GeV. The upper limit to the full width at half-maximum is 1.3 MeV.

Harald Appelshäuser, Kolloquium Bonn, July 10, 2014

80

70

60

50

40

30

20

EVENTS / 25 MeV

2 December 1974

J/ψ as a probe for deconfinement

J/ ψ SUPPRESSION BY QUARK-GLUON PLASMA FORMATION \star

1940 citations

T. MATSUI

Center for Theoretical Physics, Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

and

H. SATZ

Fakultät für Physik, Universität Bielefeld, D-4800 Bielefeld, Fed. Rep. Germany and Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

Received 17 July 1986

If high energy heavy ion collisions lead to the formation of a hot quark-gluon plasma, then colour screening prevents $c\bar{c}$ binding in the deconfined interior of the interaction region. To study this effect, the temperature dependence of the screening radius, as obtained from lattice QCD, is compared with the J/ ψ radius calculated in charmonium models. The feasibility to detect this effect clearly in the dilepton mass spectrum is examined. It is concluded that J/ ψ suppression in nuclear collisions should provide an unambiguous signature of quark-gluon plasma formation.

Statistical QCD predicts that strongly interacting matter should at sufficiently high density undergo a

The basic mechanism for deconfinement in dense matter is the Debye screening of the quark colour

quarkonium-suppression

similar to Debye screening in EM plasmas

sequential melting \rightarrow QGP-"Thermometer"

sequential melting

- Sequential melting expected in a wide range of models
- Feed-down affects ground-state yields

J/ψ suppression at RHIC - I

R_{AA:} Yield in AA collisions, normalized to pp

- significant J/ψ suppression observed at RHIC
- but weak energy dependence

J/ψ suppression at RHIC - II

 R_{AA} . Yield in AA collisions, normalized to pp RAA |y| < 0.35 syst_{global} = ± 12 % \bigcirc lyl∈[1.2,2.2] $syst_{global} = \pm 7 \%$ 0.8 Ţ 0.6 $\mathbf{\bullet}$ 0.4 ¢ Þ 0.2 R^{forward}/R^{mid} $syst_{global} = \pm 14 \%$ 1.2 Ī 0.8 ● Í $\mathbf{\bullet}$ 0.6 0.4 0.2 n 50 100 150 200 250 300 350 400 N_{part}

 J/ψ are less suppressed at mid-rapidity, despite larger energy density

What happens to c-quarks after QGP lifetime? Must show up in final-state hadrons

 \rightarrow J/ ψ regeneration?

Several regeneration scenarios on the market.

Most drastic approach: Statistical hadronization

statistical hadronization

Final state hadron yields (u,d,s) are consistent with thermal production at the phase boundary, characterized by T and μ_B

Andronic, Braun-Munzinger, Stachel NPA772 (2006)

Stachel, Andronic, Braun-Munzinger, Redlich 1311.4662

Harald Appelshäuser, Kolloquium Bonn, July 10, 2014

J/ψ regeneration

- all ccbar pairs are created in initial hard collisions
- $all J/\psi$ are dissolved in the QGP
- hadrons with charm are formed at the phase boundary
- population follows statistical laws
- explains weak energy dependence in SPS-RHIC regime and rapidity dependence at RHIC

J/ψ regeneration

- strong dependence of J/ψ regeneration on total charm cross section

⁻ drastic enhancement predicted at the LHC (full energy)

J/ψ from RHIC to the LHC

\rightarrow qualitatively new picture of J/ ψ – suppression at the LHC

J/ψ at the LHC – centrality dependence

→ qualitatively new picture of J/ψ – suppression at the LHC → strong indication for significant regeneration

J/ψ transverse momentum dependence

 \rightarrow increase of J/ ψ relative to RHIC at *low* p_{τ}

J/ψ transverse momentum dependence

 $\rightarrow p_{\rm T}$ – dependence consistent with J/ ψ regeneration

p-Pb

 R_{AA} : normalized particle production in Pb-Pb relative to pp (\neq 1?) R_{pPb} : normalized particle production in p-Pb relative to pp (=1?)

J/ψ in p-Pb

→ significant suppression also in p-Pb
 → consistent with models including shadowing and/or energy loss

 J/ψ in p-Pb vs Pb-Pb

Characteristic difference of p_{τ} dependencies:

- in p-Pb: suppression at low $p_T \rightarrow$ nuclear parton distributions
- in Pb-Pb: enhancement at low $p_T \rightarrow$ regeneration

→ hot-medium effects in Pb-Pb show up relative to p-Pb (and Pb-p)

J/ψ enhancement at the LHC

 \rightarrow strong indication of J/ ψ regeneration at the LHC

ALICE – past, present and near future

Run 1: 2010-2013

- 0.15 nb⁻¹ Pb-Pb at $\sqrt{s_{NN}}$ =2.76 TeV
 - i.e. twice the design luminosity (at 50% design energy)!
- reference pp data at √s=2.76 TeV
- 30 nb⁻¹ p-Pb at Vs_{NN} =5 TeV
- \rightarrow striking new phenomena observed

2013-2014: LS1

- detector completion and upgrades (TPC readout, TRD completion)

Run 2: 2015-2017

- 1 nb⁻¹ Pb-Pb at Vs_{NN} =5.1 TeV
- reference data pp, p-Pb

LHC Run 2– Quarkonia and HF

Quarkonia:

- $\Upsilon(2s, 3s)$ melting:
- onset behaviour
- low $p_T J/\psi$ regeneration
- J/ ψ collectivity
- -ψ' puzzle

Heavy Flavors:

- $D_s R_{AA}$

future opportunities at LHC

after completion of Run 2 (1 nb⁻¹ Pb-Pb at Vs_{NN} =5.1 TeV) there will be high-precision data available on some of the key observables

BUT there will be major opportunities at the LHC to be explored with increased Pb-Pb luminosity in Run 3 (O(10/nb) Pb-Pb at Vs_{NN} =5.5 TeV) and significant detector upgrades

future opportunities at LHC

Jets

- precision measurements:

γ-Jet, b-Jet, Z-Jet, multi-Jet,PID fragmentation functions,TeV-scale jet quenching

- Y spectroscopy 1s, 2s, 3s states, onset-behaviour
- **Charmonia** low $p_T J/\psi$ over wide rapidity range, ψ' , X_c

Heavy Flavors- comprehensive measurement of D, D*, D, Λ_s , Λ_c , B, Λ_b :
Baryon/Meson ratios down to low p_T , R_{AA} , v_2
accurate normalization for quarkonia

- EM radiation low mass dileptons
- Exotica anti- and hypernuclei

→ enter 10 nb⁻¹ regime

ALICE – upgrade strategy

Dedicated heavy-ion experiment

 \rightarrow upgrades focus on heavy-ion physics

Strengthen the uniqueness of ALICE

→ improve low $p_{\rm T}$ tracking, vertexing, and PID capabilities, reduce material budget

Many of the key observables, though "rare", do not allow low-level triggering → high rate capability of detectors and readout systems

 \rightarrow emphasizes complementarity to ATLAS and CMS

ALICE upgrade LOI

→ comprehensive Letter of Intent endorsed by LHCC

https://cdsweb.cern.ch/record/1475243/files/LHCC-I-022.pdf

example: low-mass di-electrons

• full exploitation of Run3 physics potential requires significant TPC upgrade

ALICE – core upgrades

LS2 (2018-19):

- Upgrade Inner Tracking System (ITS)

- → improve vertex resolution and low p_{T} tracking capability, faster readout, reduced material budget
- Upgrade TPC with GEM-based readout chambers
- ightarrow continuous readout at 50 kHz collision rate in Pb-Pb
- Upgrade of readout electronics and online systems HLT, DAQ, trigger
- ightarrow 1 TB/s into online systems
- \rightarrow partial event reconstruction (20 GB/s to tape)

TPC upgrade - limitation of the present system

present MWPC-based readout chambers employ a gating grid:

after 100 μs of electron drift time, the gating grid needs to be kept close for ~200 μs to prevent back-drifting ions into the drift region

→ total time ~300 µs limits maximal readout rate to ~3 kHz

ignoring the GG closure time (i.e. keeping it open all the time) leads to excessive space point distortion due to space charge accumulation in drift volume.

- \rightarrow novel technologies required to block ions: MPGDs
- Allows for ungated ("continuous") readout
 N.B.: on average 5 events pile up in the TPC at 50 kHz and t_{d,max} = 100 μs

GEMs

Electron microscope photograph of a GEM foil

ALICE

- GEM:
- micro-patterned gas detector for electron multiplication
- proven to work reliably in high-rate applications
- in a TPC with continuous readout: back-drifting ions into drift space
- → IBF can be minimized by optimization of GEM geometry and field configuration
- \rightarrow requires significant R&D effort
- → build on experience from R&D for PANDA and ILC TPCs

design specifications

Main TPC performance goals:

- enable continuous readout at 50 kHz collision rate in Pb-Pb
- efficient charged-particle tracking and dE/dx resolution <8.5%
- \rightarrow new readout chambers (gain 2000 in Ne-CO₂-N₂ (90-10-5))
 - ion backflow (IBF) \leq 1%, i.e. ϵ < 20
 - energy resolution $\sigma(^{55}Fe) \le 12\%$
- \rightarrow new readout electronics
 - continuous readout
 - negative signal polarity
- ightarrow novel calibration and online reconstruction schemes
 - online data compression by factor 20
 - space charge distortions

ALICE TPC Upgrade TDR

TPC Upgrade TDR submitted to LHCC in March 2014 CERN-LHCC-2013-020

Croatia	Zagreb	Department of Physics University of Zagrah
Denmark	Copenhagen	Niels Bohr Institute University of Copenhagen
Einland	Holoinki	Heleinki Institute, Oniversity of Copenhagen
Cermony BMBE	Bonn	Helmholtz Institut für Kern, und Strahlennhysik Dheinische Eriedrich
Germany BWBF	Donn	Wilhelms-Universität Bonn
Germany BMBF	Frankfurt	Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt
Germany BMBF	Heidelberg	Physikalisches Institut, Ruprecht-Karls Universität Heidelberg
Germany BMBF	Munich	Physik Department, Technische Universität München
Germany BMBF	Tübingen	Physikalisches Institut, Eberhard Karls Universität Tübingen
Germany BMBF	Worms	FH Worms, Worms
Germany GSI	Darmstadt	Research Division and ExtreMe Matter Institute EMMI, GSI
		Helmholtzzentrum für Schwerionenforschung
Hungary	Budapest	Wigner Research Center for Physics, Budapest
India	Kolkata	Bose Institute
India	Bhubaneswar	Institute of Physics
India	Bhubaneswar	National Institute of Science Education and Research
India	Indore	Indian Institute of Technology
India	Mumbai	Indian Institute of Technology
India	Kolkata	Variable Energy Cyclotron Centre
Japan	Tokyo	University of Tokyo
Mexico	Mexico City	Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de
	-	México
Norway	Bergen / Tonsberg	Department of Physics, University of Bergen, Vestfold University Col-
		lege, Tonsberg
Norway	Bergen	Faculty of Engineering, Bergen University College
Pakistan	Islamabad	Department of Physics, COMSATS Institute of Information Technology
		Islamabad
Poland	Cracow	The Henryk Niewodniczanski Institute of Nuclear Physics, Polish
		Academy of Science
Romania	Bucharest	National Institute for Physics and Nuclear Engineering
Slovakia	Bratislava	Faculty of Mathematics, Physics and Informatics, Comenius University
Sweden	Lund	Division of Experimental High Energy Physics, University of Lund
USA DOE	Omaha	Creighton University, Omaha, Nebraska
USA DOE	Houston	University of Houston, Houston, Texas
USA DOE	Berkeley	Lawrence Berkeley National Laboratory, Berkeley, California
USA DOE	Livermore	Lawrence Livermore National Laboratory, Livermore, California
USA DOE	Oak Ridge	Oak Ridge National Laboratory, Oak Ridge, Tennessee
USA DOE	West Lafayette	Purdue University, West Lafayette, Indiana
USA DOE	Knoxville	University of Tennessee, Knoxville, Tennessee
USA DOE	Austin	The University of Texas at Austin, Austin, Texas
USA DOE	Detroit	Wayne State University, Detroit, Michigan
USA DOE	New Haven	Yale University, New Haven, Connecticut
USA NSF	San Luis Obispo	California Polytechnic State University, San Luis Obispo, California
USA NSF	Chicago	Chicago State University, Chicago, Illinois

Harald Appelshäuser, Kolloquium Bonn, July 10, 2014

TDR baseline solution: 4-GEM stack

Baseline solution (S-LP-LP-S) employs standard (S) and large-pitch (LP) GEMs

 $U_{\text{GEM1}} < U_{\text{GEM2}} < U_{\text{GEM3}} < U_{\text{GEM4}}$

IBF performance in MPGD systems

space charge distortions

50 kHz Pb-Pb, Ne-CO₂-N₂ (90-10-5), gain =2000, IBF = 1% (ϵ = 20), t_d^{ion} = 0.16 s

ightarrow ions from 8000 events pile up in the drift volume

• at small r and z distortions reach dr = 20 cm and $dr\varphi = 8$ cm

• corrections to a few 10^{-3} (500 μ m) are required for final resolution

space charge distributions

Study of space-charge distributions and variations in space and time based on real Pb-Pb raw data

In Ne-CO₂-N₂ (90-10-5) at 50 kHz, 8000 "ion events" pile up within 160 ms

Significant fluctuations O(1%) of the space charge distributions need to be considered

online tracking: momentum resolution

- momentum resolution after first reconstruction stage factor 1.5 2 worse than ideal
- practically fully recovered after second reconstruction stage

TPC upgrade - time schedule

summary

Heavy-Ion program from LHC-Run1 concludes with major new results to characterize the nature of hot and dense elementary matter

Significant improvement of data quality expected in Run 2

ALICE plans a major upgrade of their detector systems to enable full exploitation of the LHC physics potential in Run 3

A technical solution for TPC readout chamber upgrade based on GEMs is demonstrated in a TDR to the LHCC

R&D is ongoing to assess all technological options and optimize the present solution