hossile until Astronomia . Wereiffile Beren

Die Mathematisch-Naturwissenschaftliche Fakultät und das Helmholtz-Institut für Strahlen-und Kernphysik, Abteilung Theorie

laden ein zum

Gedenk-Kolloquium für Dr. Klaus Erkelenz und zur Gründung der Dr. Klaus Erkelenz Stiftung

Freitag, 15. November 2013, 16.00 Uhr c.t. im Hörsaal I des Physikalischen Instituts, Nussallee 12, 53115 Bonn

Programm

- Einführung 16:15 Professor Dr. Ulf-G. Meißner Dekan der Mathematisch-Naturwissenschaftlichen Fakultät an der Universität Bonn
- 16:30 Vortrag Professor Dr. Ruprecht Machleidt University of Idaho, Moscow, USA Klaus Erkelenz and the Bonn Potential
- 17:15 Vortrag Professor Dr. Ulf-G. Meißner Direktor der Abteilung Theorie des Helmholtz-Instituts für Strahlen- und Kernphysik der Universität Bonn Nuclear Theory: A Modern Perspective
- 18:00 Professor e.m. Dr. Peter David Erinnerungen an Dr. Klaus Erkelenz

Prof. R. Machleidt, Univ. of Idaho, USA Klaus Erkelenz and the Bonn Potential

Dr. Klaus Erkelenz was a research associate at the Institute for Theoretical Nuclear Physics of the Bonn University until November 1973, when he died untimely at the age of 42.

Even though his career was cut short, he made substantial contributions to nuclear physics.

His main focus was the meson theory of nuclear forces. In particular, he worked on a consistent relativistic derivation of the nucleon-nucleon interaction based upon meson field theory. His initiatives inspired a decade of further work on the subject at the Bonn Institute. The resulting nuclear force models have become known in the international community as the "Bonn Potentials".

Prof. U.-G. Meißner, Univ. Bonn & FZ Jülich **Nuclear Theory: A Modern Perspective**

Effective Field Theory is a modern tool in many branches of theoretical physics. In particular, the problem of the forces between two and three nucleons has gained renewed interest based on this framework. I discuss the essentials of this approach and show how it ties to the meson field theory potentials like the one set up by Klaus Erkelenz and others. In addition, the use of high performance computers allows for ab initio calculations of the properties of atomic nuclei and gives new insight into the fine-tuning underlying nucleosynthesis in the Big Bang and in stars.

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013

 $\cdot \circ \triangleleft < \land \bigtriangledown >$

Nuclear Theory: A Modern Perspective Ulf-G. Meißner, Univ. Bonn & FZ Jülich

CONTENTS

- Some basic facts
- Ab initio calculation of atomic nuclei
- The fate of carbon-based life
- Towards medium-mass nuclei
- Summary & outlook

Some basic facts

STRUCTURE FORMATION in QCD

- The strong interactions are described by QCD
- Quarks and gluons are confined within hadrons
- Protons and neutrons form atomic nuclei
- \Rightarrow This requires the inclusion of electromagnetism
- \Rightarrow Atomic nuclei make up the **visible** matter in the Universe
- up and down quarks are very light, a few MeV

So how are these strongly interacting composites generated?

How sensitive are they to changes in the fundamental parameters of QCD+QED?

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 \cdot O < \land \bigtriangledown \triangleright \triangleright \bullet

THE NUCLEAR LANDSCAPE: AIMS & METHODS

- Theoretical methods:
- Lattice QCD: *A* = 0, 1, 2, ...
- NCSM, Faddeev-Yakubowsky, GFMC, ... : A = 3 16
- coupled cluster, . . .: A = 16 100
- density functional theory, . . .: $A \ge 100$
- Chiral EFT:
- provides accurate NN and 3N forces
- successfully applied in light nuclei with A = 2, 3, 4
- combine with simulations to get to larger A

 \Rightarrow Nuclear Lattice Simulations

Ab initio calculations of atomic nuclei

Ingredients

- Nuclear binding is shallow: $E/A \le 8 \,\mathrm{MeV}$
- \Rightarrow Nuclei can be calculated from the A-body Schrödinger equation: $H\Psi_A = E\Psi_A$
- Forces are of (dominant) two- and (subdominant) three-body nature:

 $V = V_{
m NN} + V_{
m NNN}$

- \Rightarrow can be calculated **systematically** and to **high-precision** Weinberg, van Kolck, Epelbaum, M., Entem, Machleidt, ...
- \Rightarrow fit all parameters in $V_{
 m NN} + V_{
 m NNN}$ from 2- and 3-body data
- \Rightarrow exact calc's of systems with $A \leq 4$ using Faddeev-Yakubowsky machinery

see fig.

 \Rightarrow connection to boson-exchange models (as in Machleidt's talk)? \rightarrow slide

But how about *ab initio* calculations for systems with $A \ge 5$?

CONNECTION to BOSON–EXCHANGE MODELS

Epelbaum, M., Glöckle, Elster, Phys. Rev. C65 (2002) 044001 [nucl-th/0106007]

=

+

Μ

• Basic idea:

Expand meson-exchange in powers of t/M_R^2 and map on 4N operators

• works amazingly well all LECs of natural size (in units of $1/F_{\pi}^{n}\Lambda_{\chi}^{m}$)

+ •••

NUCLEAR LATTICE SIMULATIONS

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000), Lee, Schäfer (2004), . . . Borasoy, Krebs, Lee, UGM, Nucl. Phys. A768 (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. A31 (2007) 105

- new method to tackle the nuclear many-body problem
- discretize space-time $V = L_s \times L_s \times L_s \times L_t$: nucleons are point-like fields on the sites
- discretized chiral potential w/ pion exchanges and contact interactions
- typical lattice parameters

$$\Lambda = rac{\pi}{a} \simeq 300 \, {
m MeV} \, [{
m UV} \, {
m cutoff}]$$

• strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

J. W. Chen, D. Lee and T. Schäfer, Phys. Rev. Lett. 93 (2004) 242302

• hybrid Monte Carlo & transfer matrix (similar to LQCD)

CONFIGURATIONS

- \Rightarrow all *possible* configurations are sampled
- \Rightarrow *clustering* emerges *naturally*
- \Rightarrow perform *ab initio* calculations using only V_{NN} and V_{NNN} as input
- \Rightarrow grand challenge: the spectrum of ¹²C

SPECTRUM OF ¹²C & the HOYLE STATE

Epelbaum, Krebs, Lee, UGM, Phys. Rev. Lett. 106 (2011) 192501 Epelbaum, Krebs, Lähde, Lee, UGM, Phys. Rev. Lett. 109 (2012) 252501 Viewpoint: Hjorth-Jensen, Physics 4 (2011) 38

 ∇

<u>THE TRIPLE-ALPHA PROCESS \rightarrow MOVIE</u>

- the ⁸Be nucleus is instable, long lifetime \rightarrow 3 alphas must meet
- the Hoyle state sits just above the continuum threshold
 → most of the excited carbon nuclei decay
 - (about 4 out of 10000 decays produce stable carbon)
- carbon is further turned into oxygen but w/o a resonant condition

 \Rightarrow a triple wonder !

RESULTS

• some groundstate energies and differences

E [MeV]	NLEFT	Exp.
³ He - ³ H	0.78(5)	0.76
⁴ He	-28.3(6)	-28.3
⁸ Be	-55(2)	-56.5
^{12}C	-92(3)	-92.2

- promising results
- excited states more difficult
- \Rightarrow new projection MC method

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 \cdot O < \wedge ∇ >

The SPECTRUM of CARBON-12

• After 8 • 10⁶ hrs JUGENE/JUQUEEN (and "some" human work)

The fate of carbon-based life as a function of the fundamental parameters of QCD+QED

FINE-TUNING of FUNDAMENTAL PARAMETERS

EARLIER STUDIES of the ANTHROPIC PRINCIPLE

• rate of the 3
$$lpha$$
-process: $r_{3lpha} \sim \left(rac{N_lpha}{kT}
ight)^3 \Gamma_\gamma \, \exp\left(-rac{\Delta E}{kT}
ight)$
 $\Delta E = E_{12}^\star - 3E_lpha = 379.47(18) \, {
m ke}^\star$

 how much can ΔE be changed so that there is still enough ¹²C and ¹⁶O?

$$\Rightarrow$$
 $\left|\Delta E
ight|\lesssim 100$ keV $ight)$

Oberhummer et al., Science **289** (2000) 88 Csoto et al., Nucl. Phys. A **688** (2001) 560 Schlattl et al., Astrophys. Space Sci. **291** (2004) 27 [Livio et al., Nature **340** (1989) 281]

 $< \land \nabla$

<

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013

FINE-TUNING: MONTE-CARLO ANALYSIS

Epelbaum, Krebs, Lähde, Lee, UGM, PRL 110 (2013) 112502; Eur.Phys.J. A49 (2013) 82

- ullet consider first QCD only ightarrow calculate $\partial\Delta E/\partial M_{\pi}$
- relevant quantities (energy differences)

$$\Delta E_h \equiv E_{12}^* - E_8 - E_4, \quad \Delta E_b \equiv E_8 - 2E_4$$

• energy differences depend on parameters of QCD (LO analysis)

$$E_i = E_i \bigg(M_\pi^{\text{OPE}}, m_N(M_\pi), \tilde{g}_{\pi N}(M_\pi), C_0(M_\pi), C_I(M_\pi) \bigg)$$

$${ ilde g}_{\pi N} \equiv {g_A \over 2 F_\pi}$$

• remember: $M^2_{\pi^\pm} \sim (m_u + m_d)$

Gell-Mann–Oakes–Renner (1968)

 \Rightarrow quark mass dependence \equiv pion mass dependence

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 \cdot O \triangleleft C \wedge ∇ > D \circ

PION MASS VARIATIONS

• consider pion mass changes as *small perturbations*

$$\begin{split} \frac{\partial E_i}{\partial M_{\pi}} \Big|_{M_{\pi}^{\rm phys}} &= \left. \frac{\partial E_i}{\partial M_{\pi}^{\rm OPE}} \right|_{M_{\pi}^{\rm phys}} + x_1 \left. \frac{\partial E_i}{\partial m_N} \right|_{m_N^{\rm phys}} + x_2 \left. \frac{\partial E_i}{\partial \tilde{g}_{\pi N}} \right|_{\tilde{g}_{\pi N}^{\rm phys}} \\ &+ x_3 \left. \frac{\partial E_i}{\partial C_0} \right|_{C_0^{\rm phys}} \right. \\ \left. + x_4 \left. \frac{\partial E_i}{\partial C_I} \right|_{C_I^{\rm phys}} \end{split}$$

with

$$x_1 \equiv \left. \frac{\partial m_N}{\partial M_\pi} \right|_{M^{\rm phys}_\pi}, \ x_2 \equiv \left. \frac{\partial \tilde{g}_{\pi N}}{\partial M_\pi} \right|_{M^{\rm phys}_\pi}, \ x_3 \equiv \left. \frac{\partial C_0}{\partial M_\pi} \right|_{M^{\rm phys}_\pi}, \ x_4 \equiv \left. \frac{\partial C_I}{\partial M_\pi} \right|_{M^{\rm phys}_\pi}$$

 \Rightarrow problem reduces to the calculation of the various derivatives using AFQMC and the determination of the x_i

- x_1 and x_2 can be obtained from LQCD plus CHPT
- x_3 and x_4 can be obtained from two-body scattering and its M_{π} -dependence

VISUALIZATION of the PION MASS VARIATIONS

• At LO, one-pion exchange and 4N contact terms

CORRELATIONS

• vary the quark mass derivatives of $a_{s,t}^{-1}$ within $-1, \ldots, +1$:

• clear correlations: α -particle BE and the energies/energy differences

 \Rightarrow anthropic or non-anthropic scenario depends on whether the ⁴He BE moves!

THE END-OF-THE-WORLD PLOT

$ullet \left| \delta(\Delta E_{h+b}) ight| < 100 \ { m keV}$

$$ightarrow \left| \left(0.571(14) ar{A}_s + 0.934(11) ar{A}_t - 0.069(6)
ight) rac{\delta m_q}{m_q}
ight| < 0.0015$$

Towards medium-mass nuclei

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 · O < < / ∇ > > •

GOING up the ALPHA CHAIN

• Consider the lpha ladder 12 C, 16 O, 20 Ne, 24 Mg, 28 Si as $t_{
m CPU} \sim A^2$

• Improved "multi-state" technique to extract g.s. energies

 \Rightarrow higher A, better accuracy

 \Rightarrow overbinding at LO beyond A = 12 persists up to NNLO

REMOVING the OVERBINDING

27

Lähde et al., arXiv:1311.0477 [nucl-th]

- Overbinding is due to four α clusters in close proximity
 - \Rightarrow remove this by an effective 4N operator [long term: N3LO]

$$\begin{pmatrix} V^{(4\mathrm{N}_{\mathrm{eff}})} = D^{(4\mathrm{N}_{\mathrm{eff}})} \sum_{1 \le (\vec{n}_i - \vec{n}_j)^2 \le 2} \rho(\vec{n}_1) \rho(\vec{n}_2) \rho(\vec{n}_3) \rho(\vec{n}_4) \end{pmatrix}$$

- fix the coefficient $D^{(4N_{eff})}$ from the BE of 24 Mg
 - \Rightarrow excellent description of the g.s. energies

A	12	16	20	24	28
Th	-90.3(2)	-131.3(5)	-165.9(9)	-198(2)	-233(3)
Exp	-92.16	-127.62	-160.64	-198.26	-236.54

GROUND STATE ENERGIES

SUMMARY & OUTLOOK

- Nuclear forces can be calculated accurately and systematically in chiral EFT
- Connection to boson-exchange models can be made
- Nuclear lattice simulations as a new quantum many-body approach
- Fix parameters in few-nucleon systems → predictions (*ab initio* calculations)
- ¹²C spectrum at NNLO \rightarrow Hoyle state and its structure
- Fine-tuning of m_{quark} and $\alpha_{\text{EM}} \rightarrow \text{viability of life}$ \Rightarrow changes in m_{quark} of about 2% and in α_{EM} of about 2.5% are allowed
- First ab initio results for medium mass nuclei

 \Rightarrow the strong interactions remain a challenge

SPARES

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 · O < < \land \bigtriangledown > \triangleright •

The RELEVANT QUESTION

Date: Sat, 25 Dec 2010 20:03:42 -0600 From: Steven Weinberg (weinberg@zippy.ph.utexas.edu) To: Ulf-G. Meissner (meissner@hiskp.uni-bonn.de) Subject: Re: Hoyle state in 12C

Dear Professor Meissner,

Thanks for the colorful graph. It makes a nice Christmas card. But I have a detailed question. Suppose you calculate not only the energy of the Hoyle state in C12, but also of the ground states of He4 and Be8. How sensitive is the result that the energy of the Hoyle state is near the sum of the rest energies of He4 and Be8 to the parameters of the theory? I ask because I suspect that for a pretty broad range of parameters, the Hoyle state can be well represented as a nearly bound state of Be8 and He4.

All best,

Steve Weinberg

- How does the Hoyle state relative to the 4He+8Be threshold, if we change the fundamental parameters of QCD+QED?
- not possible in nature, but on a high-performance computer!

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 · O < < / ∇ > D

The NON-ANTHROPIC SCENARIO

• Weinberg's assumption: The Hoyle state stays close to the 4He+8Be threshold

The ANTHROPIC SCENARIO

•The AP strikes back: The Hoyle state moves away from the 4He+8Be threshold

EARLIER STUDIES of the AP

- By hand modification of the energy diff. & network calcs in massive stars Livio et al., Nature 340 (1989) 281
 - \hookrightarrow a 60 keV increase does not significantly alter carbon production
 - \hookrightarrow a 60 keV decrease roughly doubles the carbon production rate
 - \hookrightarrow a ± 277 keV change leaves essentially no carbon (just oxygen)
 - \hookrightarrow weak conclusion: the strong AP might be in trouble
- Changing *NN* and em interactions in a microscopic model & network calcs
 Oberhummer et al., Science 289 (2000) 88
 - \hookrightarrow modified NN strength & fine structure constant in [0.996, 1.004]
 - \hookrightarrow no influence on the width but on the relative position of the Hoyle state
 - \hookrightarrow use up-to-date stellar evolution model
 - \hookrightarrow more than 0.5[4]% in the strong coupling [α_{QED}] would destroy all carbon (oxygen) in stars
 - \hookrightarrow "should be of interest to AP considerations"

Introduction II: Effective Field Theory for Nuclear Physics

only a brief reminder \rightarrow details in

E. Epelbaum, H.-W. Hammer, UGM, Rev. Mod. Phys. **81** (2009) 1773 [arXiv:0811.1338 [nucl-th]]

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 · O < < / ∇ > D •

CHIRAL EFT FOR FEW-NUCLEON SYSTEMS

Gasser, Leutwyler, Weinberg, van Kolck, Epelbaum, Bernard, Kaiser, UGM, . . .

• Scales in nuclear physics:

Natural: $\lambda_{\pi} = 1/M_{\pi} \simeq 1.5$ fm (Yukawa 1935)

Unnatural: $|a_{np}({}^1S_0)| = 23.8\,{
m fm}$, $a_{np}({}^3S_1) = 5.4\,{
m fm} \gg 1/M_\pi$

• this can be analyzed in a suitable EFT based on

$$\mathcal{L}_{ ext{QCD}}
ightarrow \mathcal{L}_{ ext{EFF}} = \mathcal{L}_{\pi\pi} + \mathcal{L}_{\pi N} + \mathcal{L}_{NN} + \dots$$

- pion and pion-nucleon sectors are perturbative in $Q/\Lambda_{\chi}
 ightarrow$ chiral perturbation th'y
- \mathcal{L}_{NN} collects short-distance contact terms, to be fitted
- NN interaction requires non-perturbative resummation

 \rightarrow chirally expand V_{NN(N)}, use in regularized LS/FY equation

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 · O < < < < > > > >

CHIRAL POTENTIAL and NUCLEAR FORCES

- explains naturally the observed hierarchy of nuclear forces
- MANY successfull tests in few-nucleon systems (continuum calc's)

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 · O < < / ∇ > D •

Nuclear lattice simulations – Formalism –

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 · O < < \land \bigtriangledown > \triangleright •

NUCLEAR LATTICE SIMULATIONS

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000), Lee, Schäfer (2004), . . . Borasoy, Krebs, Lee, UGM, Nucl. Phys. A768 (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. A31 (2007) 105

- new method to tackle the nuclear many-body problem
- discretize space-time $V = L_s \times L_s \times L_s \times L_t$: nucleons are point-like fields on the sites
- discretized chiral potential w/ pion exchanges and contact interactions
- typical lattice parameters

$$\Lambda = rac{\pi}{a} \simeq 300 \, {
m MeV} \, [{
m UV} \, {
m cutoff}]$$

• strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

J. W. Chen, D. Lee and T. Schäfer, Phys. Rev. Lett. 93 (2004) 242302

• hybrid Monte Carlo & transfer matrix (similar to LQCD)

CONFIGURATIONS

 \Rightarrow all *possible* configurations are sampled \Rightarrow *clustering* emerges *naturally*

TRANSFER MATRIX METHOD

- Correlation–function for A nucleons: $Z_A(t) = \langle \Psi_A | \exp(-tH) | \Psi_A \rangle$ with Ψ_A a Slater determinant for A free nucleons
- Ground state energy from the time derivative of the correlator

$$E_A(t) = -rac{d}{dt}\,\ln Z_A(t)$$

 \rightarrow ground state filtered out at large times: $E_A^0 = \lim_{t \to \infty} E_A(t)$

 \bullet Expectation value of any normal–ordered operator ${\cal O}$

$$Z_A^{\mathcal{O}} = raket{\Psi_A} \exp(-tH/2) \, \mathcal{O} \, \exp(-tH/2) \ket{\Psi_A}$$

$$\lim_{t o\infty}\,rac{Z_A^{\mathcal{O}}(t)}{Z_A(t)}=\langle\Psi_A|\mathcal{O}\,|\Psi_A
angle$$

TRANSFER MATRIX CALCULATION

• Expectation value of any normal–ordered operator $\boldsymbol{\mathcal{O}}$

$$egin{aligned} &\langle \Psi_A | \mathcal{O} \left| \Psi_A
ight
angle &= \lim_{t o \infty} \ rac{\langle \Psi_A | \exp(-tH/2) \ \mathcal{O} \ \exp(-tH/2) \left| \Psi_A
ight
angle \ &\langle \Psi_A | \exp(-tH) | \Psi_A
angle \end{aligned}$$

• Anatomy of the transfer matrix

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 \cdot O \triangleleft C \wedge ∇ > D \bullet

PROJECTION MONTE CARLO TECHNIQUE

- Insert clusters of nucleons at initial/final states (spread over some time interval)
 - \rightarrow allows for all type of wave functions (shell model, clusters, . . .)
 - \rightarrow removes directional bias
- Example: two basic configurations in the spectrum of ¹²C

MONTE CARLO with AUXILIARY FILEDS

• Contact interactions represented by auxiliary fields s, s_I

• Correlation function = path-integral over pions & auxiliary fields

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 · O < \wedge ∇

COMPUTATIONAL EQUIPMENT

- Past = JUGENE (BlueGene/P)
- Present = JUQUEEN (BlueGene/Q)

Nuclear lattice simulations – Results –

neutron matter

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 · O < < / \bigtriangledown >

FIXING PARAMETERS & FIRST PREDICTIONS

- work at NNLO including strong and em isospin breaking
- 9 NN LECs from np scattering and Q_d
- 2 LECs for isospin-breaking (np, pp, nn)
- 2 LECs D, E related to the leading 3NF
- \Rightarrow make predictions
- pp vs np scattering
- nd spin-3/2 quartet channel

40 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 $p_{\rm CM}\,({\rm MeV})$ $p_{\rm CM}$ (MeV) ${}^{1}S_{0}$ ĹΟ 140 NLO + IB + EM 0.15 PWA93 (pp) 120 × 0.10 $\delta(^{1}S_{0})$ (degrees) 08 08 08 09 o cot & (fm⁻¹) 0.05 0 -0.05 or p-d (exp.) n-d (exp.) 40 -0.10 × LO NLO 20 -0.15 A NNLO 60 80 100 120 140 160 20 40 0 0.30 0 0.10 0.20 0.40 $p_{\rm CM}$ (MeV) p^2 (fm⁻²)

LÒ.

NLO₃

PWA93 (np)

140

120

80

40

20

 ${}^{3}S_{1}$

LÓ₂

NLO₃

PWA93 (np)

180

160

 $(323)^{(32)}$ (degrees) (140 (120)

80

60

Ground states

Epelbaum, Krebs, Lähde, Lee, UGM, arxiv:1208.1328

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 · O < < < < > > > > • •

PREDICTIONS: TRITON & HELIUM-3

Epelbaum, Krebs, Lee, UGM, Phys. Rev. Lett. 104 (2010) 142501; Eur. Phys. J. A 45 (2010) 335

• binding energies of 3N systems: $E(L) = B.E. - \frac{a}{L} \exp(-bL)$

see also Hammer, Kreuzer (2011)

 $< \land \nabla$

 $\cdot \circ \triangleleft$

 \Rightarrow predict the energy difference $E(^{3}He) - E(^{3}H)$

Ground state of ⁴He

Ground state of ⁸Be

Ground state of ¹²C

Ground state of ¹⁶O

EXCITED STATES of ¹²C

THE HOYLE STATE (0_2^+)

- energy: $E(0_2^+) = -85(3) \, \text{MeV}$
- close to $E(^{4}\text{He}) + E(^{8}\text{Be}) = -83.3(2.0) \text{ MeV}$
- structure: "bent" alpha-chain like (not "BEC")

A HOYLE STATE EXCITATION (2_2^+)

- a 2^+ state 2 MeV above the Hoyle state
- interpretation:

a rotational band of the Hoyle state generated from excitations of the alpha-chain

- what's in the data ?
 - a 2^+ state 3.51 MeV above the Hoyle state seen in ${}^{11}B(d,n){}^{12}C$ not included in the level scheme! Ajzenberg-Selove, Nucl. Phys. A506 (1990) 1
 - a 2⁺ state 3.8(4) MeV above the Hoyle state seen in ${}^{12}C(\alpha, \alpha){}^{12}C$ Bency John et al., Phys. Rev. C 68 (2003) 014305
- \bullet and much more, see next slide and: \rightarrow talk by Henry Weller

 \Rightarrow ab initio prediction requires experimental confirmation

SPECTRUM OF ¹²C

• Summarizing the results for carbon-12:

	0^+_1	2^+_1	0^+_2	2^+_2
LO	-96(2) MeV	-94(2) MeV	-89(2) MeV	-88(2) MeV
NLO	-77(3) MeV	-74(3) MeV	-72(3) MeV	-70(3) MeV
NNLO	-92(3) MeV	-89(3) MeV	-85(3) MeV	-83(3) MeV
				-82.6(1) MeV [1,2]
Exp.	$-92.16~{ extsf{MeV}}$	-87.72 MeV	-84.51 MeV	-82.32(6) MeV [3]
				-81.1(3) MeV [4]
				-82.13(11) MeV [5]

[1] Freer et al., Phys. Rev. C 80 (2009) 041303
[2] Zimmermann et al., Phys. Rev. C 84 (2011) 027304
[3] Hyldegaard et al., Phys. Rev. C 81 (2010) 024303
[4] Itoh et al., Phys. Rev. C 84 (2011) 054308
[5] Weller et al., in preparation

- importance of consistent 2N & 3N forces
- good agreement w/ experiment, can be improved

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 $\cdot \circ < \langle \wedge \nabla \rangle > \circ \circ$

Testing the Anthropic Principle

MC ANALYSIS of the AP

- ullet consider QCD only ightarrow calculate $\partial\Delta E/\partial M_{\pi}$
- relevant quantities (energy *differences*)

$$\Delta E_{h} \equiv E_{12}^{*} - E_{8} - E_{4}, \quad \Delta E_{b} \equiv E_{8} - 2E_{4} \left| -\Delta E_{c} \equiv E_{12}^{*} - E_{12} \right|$$

• energy differences depend on parameters of QCD (LO analysis)

$$E_i = E_i \bigg(M_\pi^{\text{OPE}}, m_N(M_\pi), \tilde{g}_{\pi N}(M_\pi), C_0(M_\pi), C_I(M_\pi) \bigg)$$

$${ ilde g}_{\pi N} \equiv {g_A \over 2 F_\pi}$$

 $\mathbf{\alpha}$

• remember: $M_{\pi^{\pm}}^2 \sim (m_u + m_d)$

 \Rightarrow quark mass dependence \equiv pion mass dependence

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 \cdot O \triangleleft C \land \bigtriangledown D \triangleright

PION MASS VARIATIONS

• consider pion mass changes as *small perturbations*

$$\begin{split} \frac{\partial E_i}{\partial M_{\pi}} \Big|_{M_{\pi}^{\rm phys}} &= \left. \frac{\partial E_i}{\partial M_{\pi}^{\rm OPE}} \right|_{M_{\pi}^{\rm phys}} + x_1 \left. \frac{\partial E_i}{\partial m_N} \right|_{m_N^{\rm phys}} + x_2 \left. \frac{\partial E_i}{\partial \tilde{g}_{\pi N}} \right|_{\tilde{g}_{\pi N}^{\rm phys}} \\ &+ x_3 \left. \frac{\partial E_i}{\partial C_0} \right|_{C_0^{\rm phys}} \right. \\ \left. + x_4 \left. \frac{\partial E_i}{\partial C_I} \right|_{C_I^{\rm phys}} \end{split}$$

with

$$x_1 \equiv \left. \frac{\partial m_N}{\partial M_\pi} \right|_{M^{\rm phys}_\pi}, \ x_2 \equiv \left. \frac{\partial \tilde{g}_{\pi N}}{\partial M_\pi} \right|_{M^{\rm phys}_\pi}, \ x_3 \equiv \left. \frac{\partial C_0}{\partial M_\pi} \right|_{M^{\rm phys}_\pi}, \ x_4 \equiv \left. \frac{\partial C_I}{\partial M_\pi} \right|_{M^{\rm phys}_\pi}$$

 \Rightarrow problem reduces to the calculation of the various derivatives using AFQMC and the determination of the x_i

- x_1 and x_2 can be obtained from LQCD plus CHPT
- x_3 and x_4 can be obtained from two-body scattering and its M_{π} -dependence

AFQMC RESUTS for the DERIVATIVES

• ${}^{4}\text{He}$

-25

-25.5

-26

-26.5

-27

-27.5

-28

-28.5

-20

-1.35

-1.4

-1.45

-1.5

-1.55

-1.6

-1.65

-1.7

1.4

1.35

1.3

1.25

1.2

1.15

fit

old data E [MeV]

2 4 6 8 10 12 14 16

 $E(N_t) = E(\infty) + \mathrm{const} \, \exp(-N_t/ au)$ 2.14 E [MeV], gnd state fit dE dC_{pp} [MeV] not fitted 2.12 old data, fitted E [MeV], Hovle state dE dC_{pp} [MeV] 0.39 -65 -80 2.1 -70 0.38 2.08 -85 -75 0.37 2.06 2.04 0.36 -80 -90 2.02 0.35 -85 2 -95 0.34 -90 1.98 0.33 -95 -100 1 96 8 10 12 14 16 2 6 8 10 12 14 16 4 6 8 10 12 14 16 8 10 12 14 16 2 4 6 4 2 2 4 6 0.585 -7.5 0.305 1.38 5.85 fit dE dCoul [MeV] 0.3 1.37 fit
 dE/dg_{πιN} [l.u.]
 not fitted 0.58 -7.6 1.36 5.8 0.295 0.575 ••••• not fitted 1.35 0.29 -7.7 0.57 5.75 1.34 0.285 -7.8 0.565 1.33 0.28 57 0.56 1.32 -7.9 0.275 1.31 0.555 5.65 0 27 1.3 0.55 0.265 1.29 fit dE/dg_{πιN} [l.u.] gnd state 5.6 dE/dc_{ii} [l.u.] -8 0.545 0.26 1.28 gnd state 0.255 0.54 -8.2 1.27 5.55 10 12 14 16 8 10 12 14 16 8 10 12 14 16 6 8 10 12 14 16 2 4 6 8 2 4 6 2 4 6 2 4 2 -0.052 -0.395 -0.505 -0.118 7.2 fit fit -0.12 dE/dm_N dE/dc₁₁ [l.u.] -0.4 -0.054 dE pion IB [MeV] -0.51 7.1 -0.122 and state -0.405 -0.515 -0.056 -0.124 -0.41 -0.126 -0.058 -0.52 69 -0.415 -0.128 -0.06 -0.525 -0.13 -0.42 6.8 -0.062 -0.53 -0.132 -0.425 6.7 -0 134 -0.064 -0.535 -0.43 fit -0 136 6.6

• ${}^{12}C(0_2^+)$

 $\cdot \circ \triangleleft < \land \bigtriangledown$ Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013

DETERMINATION of the x_i

- x_1 from the quark mass expansion of the nucleon mass: $x_1 \simeq 0.8 \pm 0.2$
- x_2 from the quark mass expansion of the pion decay constant and the nucleon axial-vector constant: $x_2 \simeq -0.056 \dots 0.008$
- x₃ and x₄ can be obtained from a two-nucleon scattering analysis & can be deduced from:

$$-rac{\partial a^{-1}}{\partial M_\pi}\equiv rac{A}{aM_\pi}=rac{1}{\pi L}S'(\eta)rac{\partial \eta}{\partial M_\pi}\,,\;\;\eta\equiv m_N E\left(rac{L}{2\pi}
ight)^2$$

 \Rightarrow while this can straightforwardly be computed, we prefer to use a representation that substitutes x_3 and x_4 by:

$$\left. rac{\partial a_s^{-1}}{\partial M_\pi} \right|_{M^{\mathrm{phys}}_\pi}, \quad \left. rac{\partial a_t^{-1}}{\partial M_\pi} \right|_{M^{\mathrm{phys}}_\pi}$$

 \Rightarrow we are ready to study the pertinent energy differences

• putting pieces together:

$$\begin{split} \frac{\partial \Delta E_{h}}{\partial M_{\pi}}\Big|_{M_{\pi}^{\rm phys}} &= -0.455(35) \left. \frac{\partial a_{s}^{-1}}{\partial M_{\pi}} \right|_{M_{\pi}^{\rm phys}} - 0.744(24) \left. \frac{\partial a_{t}^{-1}}{\partial M_{\pi}} \right|_{M_{\pi}^{\rm phys}} + 0.056(10) \\ \frac{\partial \Delta E_{b}}{\partial M_{\pi}} \Big|_{M_{\pi}^{\rm phys}} &= -0.117(34) \left. \frac{\partial a_{s}^{-1}}{\partial M_{\pi}} \right|_{M_{\pi}^{\rm phys}} - 0.189(24) \left. \frac{\partial a_{t}^{-1}}{\partial M_{\pi}} \right|_{M_{\pi}^{\rm phys}} + 0.012(9) \\ \frac{\partial \Delta E_{c}}{\partial M_{\pi}} \Big|_{M_{\pi}^{\rm phys}} &= -0.07(3) \left. \frac{\partial a_{s}^{-1}}{\partial M_{\pi}} \right|_{M_{\pi}^{\rm phys}} - 0.14(2) \left. \frac{\partial a_{t}^{-1}}{\partial M_{\pi}} \right|_{M_{\pi}^{\rm phys}} + 0.017(9) \end{split}$$

- x_1 and x_2 only affect the small constant terms
- also calculated the shifts of the individual energies (not shown here)

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 · O < < / igtarrow > >

INTERPRETATION

- $(\partial \Delta E_h / \partial M_\pi) / (\partial \Delta E_b / \partial M_\pi) \simeq 4$ $\Rightarrow \Delta E_h$ and ΔE_b cannot be independently fine-tuned
- Within error bars, $\partial \Delta E_h / \partial M_\pi \& \partial \Delta E_b / \partial M_\pi$ appear unaffected by the choice of x_1 and $x_2 \rightarrow$ indication for α -clustering
- For ΔE_h & ΔE_b , the dependence on M_π is small when

$$\partial a_s^{-1}/\partial M_\pi \simeq -1.6 \times \partial a_t^{-1}/\partial M_\pi$$

• the triple alpha process is controlled by :

$$\Delta E_{h+b} \equiv \Delta E_h + \Delta E_b = E^{\star}_{12} - 3E_4$$

$$\frac{\partial \Delta E_{h+b}}{\partial M_{\pi}} \Big|_{M_{\pi}^{\rm phys}} = -0.571(14) \left. \frac{\partial a_s^{-1}}{\partial M_{\pi}} \right|_{M_{\pi}^{\rm phys}} - 0.934(11) \left. \frac{\partial a_t^{-1}}{\partial M_{\pi}} \right|_{M_{\pi}^{\rm phys}} + 0.069(6)$$

 \Rightarrow so what can we say about the quark mass dependence of the scattering lengths?

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 \cdot O \triangleleft C \wedge ∇ > D \bullet

CONSTRAINTS on the SCATTERING LENGTHS

• Quark mass dependence of hadron properties:

$$rac{\delta O_H}{\delta m_f} \equiv K^f_H rac{O_H}{m_f} \,, \;\; f=u,d,s$$

• NN scattering lengths as a function of M_{π} : –

$$-rac{\partial a_{s,t}^{-1}}{\partial M_{\pi}}\equiv rac{A_{s,t}}{a_{s,t}M_{\pi}}, \quad A_{s,t}\equiv rac{K_{a_{s,t}}^q}{K_{\pi}^q}$$

- earlier determinations from chiral EFT at NLO Beane, Savage (2003), Epelbaum, Glöckle, UGM (2003)
- new determination at NNLO:

Epelbaum et al. (2012)

$$K^q_{a_s} = 2.3^{+1.9}_{-1.8} \,, \, K^q_{a_t} = 0.32^{+0.17}_{-0.18}
ightarrow rac{\partial a_t^{-1}}{\partial M_\pi} = -0.18^{+0.10}_{-0.10} \,, \,\, rac{\partial a_s^{-1}}{\partial M_\pi} = 0.29^{+0.25}_{-0.23}$$

• note the *magical* central value:

$$rac{\partial a_s^{-1}/\partial M_\pi}{\partial a_t^{-1}/\partial M_\pi}\simeq -1.6^{+1.0}_{-1.7}$$

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 · O < < / ∇ > \triangleright •

CORRELATIONS

• vary the quark mass derivatives of $a_{s,t}^{-1}$ within $-1, \ldots, +1$:

• clear correlations: α -particle BE and the energies/energy differences

 \Rightarrow anthropic or non-anthropic scenario depends on whether the ⁴He BE moves!

THE END-OF-THE-WORLD PLOT

$ullet \left| \delta(\Delta E_{h+b}) ight| < 100 \ { m keV}$

$$\rightarrow \left| \left| \left(0.571(14)\bar{A}_s + 0.934(11)\bar{A}_t - 0.069(6) \right) \frac{\delta m_q}{m_q} \right| < 0.0015$$

Nuclear Theory: A Modern Perspective – Ulf-G. Meißner – Bonn, November 2013 \cdot O < \land \bigtriangledown >