Gedenk-Kolloqium, Universitaet Bonn, 15. Nov. 2013

Klaus Erkelenz und das Bonn Potential

R. Machleidt University of Idaho, USA

Outline

Historical perspective

- The one-boson-exchange (OBE) model for the nuclear force
- Klaus Erkelenz' improvements of the OBE model
- Beyond one boson exchange
 Conclusions

1935	Yukawa: Meson Theory	
	The "Pion Theories"	
1950's	One-Pion Exchange: o.k.	
	Multi-Pion Exchange: disaster	
1960's	Many pions \equiv multi-pion resonances:	
	$\sigma, ho,\omega,$	
	The One-Boson-Exchange Model	
1970's	Refine meson theory:	
	More sophisticated meson-exchange models	
	(Stony Brook, Paris, Bonn)	
1980's	Nuclear physicists discover	
	\mathbf{QCD}	
	Quark Cluster Models	
	Nuclear physicists discover EFT	
1990's	Weinberg, van Kolck	
and beyond	Back to Yukawa's Meson Theory!	
	But, with Chiral Symmetry	

Pick the mesons of lowest mass.

Citation: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) (URL: http://pdg.lbl.gov)

$$\begin{array}{c} \text{LIGHT UNFLAVORED MESONS}\\ (S = C = B = 0)\\ \text{For } l = 1 (\pi, b, \rho, a): u\overline{d}, (u\overline{u} - d\overline{d})/\sqrt{2}, d\overline{u};\\ \text{for } l = 0 (\eta, \eta', h, h', \omega, \phi, f, f'): c_1(u\overline{u} + d\overline{d}) + c_2(s\overline{s}) \end{array}$$

Citation: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) (URL: http://pdg.lbl.gov)

Pick the mesons of lowest mass.

 Guided by symmetries, write down appropriate Langrangians for meson-nucleon coupling

 Pick the mesons of lowest mass.
 Guided by symmetries, write down appropriate Langrangians for meson-nucleon coupling

$$\mathcal{L}_{ps} = -g_{ps}\bar{\psi}i\gamma_5\psi\varphi^{(ps)}$$
$$\mathcal{L}_s = +g_s\bar{\psi}\psi\varphi^{(s)}$$

$$\mathscr{L}_{v} = -g_{v}\bar{\psi}\gamma^{\mu}\psi\varphi_{\mu}^{(v)} - \frac{f_{v}}{4M}\bar{\psi}\sigma^{\mu\nu}\psi(\partial_{\mu}\varphi_{\nu}^{(v)} - \partial_{\nu}\varphi_{\mu}^{(v)})$$

R. Machleidt

Pick the mesons of lowest mass.

- Guided by symmetries, write down appropriate Langrangians for meson-nucleon coupling
- Calculate the one-meson-exchange Feynman diagrams between two nucleons and sum them up to define the NN potential ("OBEP").

Feynman diagram for NN scattering

OBEPs in the 1960's

PHYSICAL REVIEW

VOLUME 135, NUMBER 2B

27 JULY 1964

Nucleon-Nucleon Scattering from One-Boson-Exchange Potentials*

RONALD A. BRYAN[†]

Laboratoire de Physique Nucléaire, Orsay (Seine et Oise), France

AND

BRUCE L. SCOTT

Department of Physics, University of Southern California, Los Angeles, California (Received 2 March 1964)

Nucleon-nucleon scattering is studied for laboratory scattering energies over the 0 to 320-MeV range for states with angular momentum $l \ge 1$. Our central hypothesis is that the interaction may be represented by a series of one-boson-exchange potentials. To this end, we attempt to fit the phenomenological models of Lassila *et al.* (Yale) and of Hamada and Johnston with the series of one-boson-exchange potentials due to the ρ , ω , π , and η , with the meson-nucleon coupling constants taken as adjustable parameters. We find that additional attraction is required in the central potentials, and we provide this by introducing two scalar mesons of isotopic spin 0 to 1, respectively. We next consider the nucleon-nucleon phase shifts that have been determined through phase-shift analysis of the N-N data by several groups. We achieve reasonable fits to the P, D, and F states with the following searched parameters: $g_{\eta}^2 = 7.0$, $g_{\pi}^2 = 11.7$, $g_{\omega}^2 = 21.5$, $g_{\rho}^2 = 0.68$, $f_{\rho}/g_{\rho} = 1.8$, $m_0 = 560$ MeV, $g_0^2 = 9.4$, $m_1 = 770$ MeV, and $g_1^2 = 6.5$; the parameters of the T = 0 and T = 1 scalar mesons are identified by the subscripts 0 and 1, respectively, and

 $\mathcal{L}_{\rm int}{}^{(\rho)} = (4\pi)^{1/2} g_{\rho} \bar{\psi} \tau \gamma^{\mu} \psi \varrho_{\mu} + (4\pi)^{1/2} (f_{\rho}/2m_{\rho}) \bar{\psi} \tau \sigma^{\mu\nu} \psi [\partial_{\nu} \varrho_{\mu} - \partial_{\mu} \varrho_{\nu}].$

Predetermined parameters are $m_p = 760$ MeV, $m_\omega = 782$ MeV, $m_\pi = 138.2$ MeV, $m_\eta = 548$ MeV, and $f_\omega/g_\omega = 0$. Because of the r^{-3} behavior of the potentials at the origin, all potentials are set to zero within 0.6 F. This has (surprisingly) little effect in most states but does eliminate bound 3P_2 and 3F_4 states. The effect of including the ϕ and the relation to other experiments is discussed.

OBEPs in the 1960's

PHYSICAL REVIEW

VOLUME 135, NUMBER 2B

27 JULY 1964

Nucleon-Nucleon Scattering from One-Boson-Exchange Potentials*

RONALD A. BRYANT Laboratoire de Physique Nucléaire, Orsay (Seine et Oise), France

AND

BRUCE L. SCOTT Department of Physics, University of Southern California, Los

to produce a local NN potential, V(r). Why? Probably for pedagogical reasons?! $m_{\omega} = 782 \text{ MeV}, m_{\pi} = 138.2 \text{ MeV}, m_{\pi} = 548 \text{ MeV}, \text{ and } f_{\omega}/g_{\omega} = 0.$ or the potentials at the origin, all potentials are set to zero within 0.6 F. This has and effect in most states but does eliminate bound ${}^{3}P_{2}$ and ${}^{3}F_{4}$ states. The effect of including

The nuclear force: three ranges

Spin-orbit force

The nuclear force in the OBE picture

Problems with those r-space OBEPs of the 1960's

Expressions are only approximate.
Definition of NN potential is handwoven.
Reproduction of the NN data not very accurate.

How did he do that?

 Stay in momentum space (no expansions, no approximations!).

 Start from the Bethe-Salpeter equation and properly define the NN potential.

Bethe-Salpeter (BS) equation

$$\mathcal{M} = \mathcal{V} + \mathcal{V}\mathcal{G}\mathcal{M} \tag{1}$$

This is equivalent to two coupled equations:

$$\mathcal{M} = \mathcal{W} + \mathcal{W}g\mathcal{M}$$
(2)
$$\mathcal{W} = \mathcal{V} + \mathcal{V}(\mathcal{G} - g)\mathcal{W}$$
(3)

where g is a covariant three-dimensional propagator with the same elastic unitarity cut as \mathcal{G} in the physical region.

More explicit,

$$\mathcal{M}(q';q|P) = \mathcal{V}(q';q|P) + \int d^4k \mathcal{V}(q';k|P) \mathcal{G}(k|P) \mathcal{M}(k;q|P)$$
(4)

with

$$\mathcal{G}(k|P) = \frac{i}{(2\pi)^4} \frac{1}{(\frac{1}{2}P + \not{k} - M + i\epsilon)^{(1)}} \frac{1}{(\frac{1}{2}P - \not{k} - M + i\epsilon)^{(2)}}$$
(5)

$$= \frac{i}{(2\pi)^4} \left[\frac{\frac{1}{2} \mathcal{P} + \mathcal{k} + M}{(\frac{1}{2}P + k)^2 - M^2 + i\epsilon} \right]^{(1)} \left[\frac{\frac{1}{2} \mathcal{P} - \mathcal{k} + M}{(\frac{1}{2}P - k)^2 - M^2 + i\epsilon} \right]^{(2)}$$
(6)

with P is the total four-momentum, for which we have in the c. m. frame: $P = (\sqrt{s}, 0)$ with \sqrt{s} the total energy.

A popular choice for g, is the **Blankenbecler-Sugar** choice, which reads in manifestly covariant form,

$$g_{\rm BbS}(k,s) = -\frac{1}{(2\pi)^3} \int_{4M^2}^{\infty} \frac{ds'}{s'-s-i\epsilon} \delta^{(+)} [(\frac{1}{2}P'+k)^2 - M^2] \times \delta^{(+)} [(\frac{1}{2}P'-k)^2 - M^2] \times \left[\frac{1}{2}P'+k+M\right]^{(1)} \left[\frac{1}{2}P'-k+M\right]^{(2)}$$
(7)

with $\delta^{(+)}$ indicating that only the positive energy root of the argument of the δ -function is to be included. By construction, g has the same singularity structure as \mathcal{G} .

R. Machleidt

Klaus Erkelenz proposed, as it turned out, a better g, namely,

$$\begin{array}{lcl} g_{\mathrm{Erk}}(k,s) &=& -\frac{1}{(2\pi)^3} \int_{4M^2}^{\infty} \frac{ds'}{s'-s-i\epsilon} \delta^{(+)}[(\frac{1}{2}P+k)^2-M^2] \times \delta^{(+)}[(P'-\frac{1}{2}P-k)^2-M^2] \\ & & \times \left[\frac{1}{2} \ P+ \ k+M\right]^{(1)} \left[\ P'-\frac{1}{2} \ P- \ k+M \right]^{(2)} \end{array}$$

where one nucleon is on its mass shell and, thus, the meson propagator includes a retardation. In the c.m. system, integration yields

$$g_{\text{Erk}}(\mathbf{k},s) = \frac{1}{(2\pi)^3} \delta(k_0 + \frac{1}{2}\sqrt{s} - E_k) \frac{M^2}{E_k} \frac{\Lambda_+^{(1)}(\mathbf{k})\Lambda_+^{(2)}(-\mathbf{k})}{\frac{1}{4}s - E_k^2 + i\epsilon}$$
(9)

With this we obtain for Eq. (2) (setting $\mathcal{W} = \mathcal{V}$)

$$\mathcal{M}(\mathbf{q}',\mathbf{q}) = \mathcal{V}(\mathbf{q}',\mathbf{q}) + \int \frac{d^3k}{(2\pi)^3} \mathcal{V}(\mathbf{q}',\mathbf{k}) \frac{M^2}{E_k} \frac{\Lambda_+^{(1)}(\mathbf{k})\Lambda_+^{(2)}(-\mathbf{k})}{\mathbf{q}^2 - \mathbf{k}^2 + i\epsilon} \mathcal{M}(\mathbf{k},\mathbf{q}), \qquad (10)$$

and taking matrix elements between positive-energy spinors

$$\mathcal{T}(\mathbf{q}',\mathbf{q}) = V(\mathbf{q}',\mathbf{q}) + \int \frac{d^3k}{(2\pi)^3} V(\mathbf{q}',\mathbf{k}) \frac{M^2}{E_k} \frac{1}{\mathbf{q}^2 - \mathbf{k}^2 + i\epsilon} \mathcal{T}(\mathbf{k},\mathbf{q}) \,. \tag{11}$$

Defining

$$\hat{\mathcal{T}}(\mathbf{q}',\mathbf{q}) = \sqrt{\frac{M}{E_{q'}}} \mathcal{T}(\mathbf{q}',\mathbf{q}) \sqrt{\frac{M}{E_q}}$$
(12)

and

$$\hat{V}(\mathbf{q}',\mathbf{q}) = \sqrt{\frac{M}{E_{q'}}} V(\mathbf{q}',\mathbf{q}) \sqrt{\frac{M}{E_q}},\tag{13}$$

which has become known as "minimal relativity", we can rewrite Eq. (11) as

$$\hat{\mathcal{T}}(\mathbf{q}',\mathbf{q}) = \hat{V}(\mathbf{q}',\mathbf{q}) + \int \frac{d^3k}{(2\pi)^3} \hat{V}(\mathbf{q}',\mathbf{k}) \frac{M}{\mathbf{q}^2 - \mathbf{k}^2 + i\epsilon} \hat{\mathcal{T}}(\mathbf{k},\mathbf{q})$$
(14)

which is the (non-relativistic) Lippmann-Schwinger equation.

R.

(8)

How well is BS reproduced by 3D equations?

- In the ladder approximation, BS and 3D equations disagree.
- But, ladder BS does not have the correct one-body limit, while 3D eqs. do (Gross, 1983).
- However, BS with cross-ladders has right one-body limit.
- The Erkelenz eq. in ladder approximation reproduces closely the fourth order ladder plus cross-ladder BS result (Woloshyn & Jackson, 1973).

... and the reproduction of the NN data is excellent ...

Phase shift predictions of high precision by relativistic momentum-space OBEP

2. 1. The S-, P-, D- and ε-(bar) phases as function of the lab. energy. Error bars are from the empirical energy-independent vermore analysis [9].

R. Machleidt

1.B:1.C

Nuclear Physics A176 (1971) 413-432; C North-Holland Publishing Co., Amsterdam Not to be reproduced by photoprint or microfilm without written permission from the publisher

Director of the Institute: **Konrad Bleuler**

MOMENTUM SPACE CALCULATION FORMALISM IN NUCLEAR

K. ERKELENZ, R. ALZETTA and Institut für Theoretische Kernphysik der Unive

Received 10 June 1971

AN IMPROVED REI

INFINIT

Abstract: Using the free reaction matrix R and the Bruecknernucleon scattering and nuclear matter problem is present helicity and partial-wave state matrix elements of the mgiven in the momentum space are calculated.

anne 49B, number 3

K. ERKELENZ^{*}, K. HOLINDE and R. MACHLEIDT

Institut für Theoretische Kernphysik, University of Bonn, Bonn, BRD

Received 27 February 1974

A momentum-space OBEP consisting of π , η , ρ , ω , ϕ , σ and δ -meson exchange is presented. Compared to a former paper (OBEP (I)) we refine the cut-off description and try to use more realistic values of the coupling constants. The quality of the resulting phase shift fit and the deuteron data is good (χ^2 /datum = 2.7) and comparable to OBEP (I). The nuclear matter data calculated in exactly the same way as in the case of OBEP (I) are improved (now 11.2 MeV at $k_F = 1.47$ fm⁻¹ compared to 12.4 MeV at $k_F = 1.55$ fm⁻¹ for OBEP (I)), since the saturation density is considerably lowered without losing too much binding.

R. Machlei

24

Nuclear Physics A176 (1971) 413-432; North-Holland Publishin Not to be reproduced by photoprint or microfilm without written permissio

MOMENTUM SPACE CALCULATIONS AND HELIC FORMALISM IN NUCLEAR PHYSICS

K. ERKELENZ, R. ALZETTA and K. HOLINDE Institut für Theoretische Kernphysik der Universität Bonn. German

Received 10 June 1971

Abstract: Using the free reaction matrix R and the Brueckner-Goldstone reaction nucleon scattering and nuclear matter problem is presented in the helicity sta

general nucleon

PHYSICS LETTERS

TIVISTIC OBEP, TWO-NUCLEON AND NUCLEAR MATTER DATA

^k, K. HOLINDE and R. MACHLEIDT e Kernphysik, University of Bonn, Bonn, BRD

ceived 27 February 1974

 $\eta, \rho, \omega, \phi, \sigma$ and δ -meson exchange is presented. Compared to a former ion and try to use more realistic values of the coupling constants. The leuteron data is good (χ^2 /datum = 2.7) and comparable to OBEP (I). he same way as in the case of OBEP (I) are improved (now 11.2 MeV at = 1.55 fm⁻¹ for OBEP (I)), since the saturation density is considerably PHYSICS REPORTS A review section of PHYSICS LETTERS (Section C)

Volume 13, Number 5, October 1974

CURRENT STATUS OF THE RELATIVISTIC TWO-NUCLEON ONE BOSON EXCHANGE POTENTIAL

K.ERKELENZ

Institut für Theoretische Kernphysik, Bonn, W.-Germany

A "Classic": 300+ citations.

R. Machleidt

PHYSICS REPORTS A review section of PHYSICS LETTERS (Section C)

Volume 13, Number 5, October 1974

CURRENT STA OF THE RELATIVISTIC TV ONE BOSON EXCHANGE

K.ERKELENZ

Institut für Theoretische Kernphysik,

The Bonn Potential after Klaus Erkelenz: Going beyond one-boson exchange (Karl Holinde & R.M.)

Non-iterative contributions
Role of meson-nucleon resonances
The sigma "meson" versus 2п exchange

A field theoretic model for 2-pion exchange

Klaus Erkelenz Colloqium, Bonn, 15 Nov 2013

R. Machleidt

29

Other important non-iterative diagrams

+ +

This resulted in the so-called Bonn Full Model (1980's)

- · Π + ω + 2Π + Π-ρ + ...
- Excellent reproduction of NN data
- Proof of principles: meson theory pursued consistently works.
- Full Model good for the investigation of specific issues, like, charge-dependence, medium effects, ...
- But: the model is complicated and energy dependent; not practical for standard nuclear structure calculations..

The last chapter in meson theory: The 1990's - Back to the beginnings

- High-precision potentials are developed.
 Among them: the "CD-Bonn potential", a very accurate relativistic momentum-space OBEP.
 It's based upon the concepts developed by Klaus Erkelenz.
- Thus, Klaus had pointed in the right direction long time ago

The last chapter in The 1990's - Back

High-precision potenti
 Among them: the "CD-accurate relativistic media

 It's based upon the concepts developed by Klaus Erkelenz.

 Thus, Klaus had pointed in the right direction long time ago

Conclusions

Klaus Erkelenz has contributed substantially to the development of realistic and quantitative nuclear forces. Without him there would have never been a Bonn Potential. His impact is still noticeable after 40 years. But he was also a fun guy and great friend.

> Klaus Erkel Colloqium, Bonn, 1

R. Machleidt