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Theme: Construction of precise NN-potential in chiral EFT
Crucial step: Derivation of basic two-pion exchange potential
Efficient method to go to higher orders: Compute spectral-functions
NN-scattering with coupled nucleon and ∆(1232) channels
Three-nucleon interactions in chiral EFT:
→ density-dependent NN-potential for many-body applications
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Encountering the work of Klaus Erkelenz

Working on NN-potentials, one will unavoidably meet with Dr. Klaus Erkelenz
(a founding father of Bonn-potential)

NN-potential has central, spin-spin, tensor, and spin-orbit components

VNN = VC(q) +VS(q)~σ1·~σ2 +VT (q)~σ1·~q ~σ2·~q +VSO(q)i(~σ1+~σ2)·(~q×~p) +~τ1·~τ2[V→W ]

Partial wave matrix-elements: S = 0 spin-singlet states 1LJ with L = J,
S = 1 spin-triplet states 3LJ with L = J, J − 1, J + 1 and latter two mix
Easy for spin-singlet states, pretend ~σ1 = −~σ2

〈J0J|VNN |J0J〉 =
1
2

∫ 1

−1
dz
[
VC(q)−3VS(q)−q2VT (q)

]
PJ (z), q = p

√
2(1−z)

Spin-triplet matrix-elements (including mixing) require helicity-formalism,
first fully correct results provided by K. Erkelenz et al.
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Nuclear interactions in chiral effective field theory

In chiral EFT, nuclear interactions are organized hierarchically (Weinberg)

hadron

structure

hot/dense

matter

L
eff

forces

nuclear finite

nuclei

Chiral Lagrangians→ derive NN-potentials = my contribution
→ applications to NN-scattering, nuclear few- and many-body systems
"High-quality nuclear forces from chiral EFT" by Patrick Reinert (2019)
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Derivation of 2π-exchange NN-potential

At next-to-leading order: two-pion exchange diagrams

~p −~p

~l −~l

ω2

ω1

Ordonez, Ray, van Kolck, PRL 72, 1982 (’94) Time-ordered perturb. theory & Gaussian cutoff,
not in spirit of quantum field theory: analytical loop-functions & UV-counterterms

WC (q) =
1

384π2f 4
π

[
4m2
π(5g4

A−4g2
A−1)+q2(23g4

A−10g2
A−1) +

48g4
Am4
π

4m2
π+q2

]
L(q) + . . .

VT (q) = −
1

q2
VS (q) =

3g4
A

64π2f 4
π

L(q) + . . . , L(q) =

√
4m2
π+q2

q
ln

q+
√

4m2
π+q2

2mπ

Issue: which part of planar box goes into NN-potential V , when T =V +V G T ?
Three different methods lead to same answer: i) perform energy-integral & expand
∫ dl0

2πi
[planar box] =

M

(l2−p2)ω2
1ω

2
2

−
ω2

1 +ω1ω2 +ω2
2

2ω3
1ω

3
2(ω1 +ω2)

,

∫ dl0
2πi

[crossed box] =
ω2

1 +ω1ω2 +ω2
2

2ω3
1ω

3
2(ω1+ ω2)

ii) Expand sum of energy denominators from time-ordered perturbation theory

1

4ω1ω2

[ 4

2δT (ω1 +δT )(ω2 +δT )
+

2

(ω1 +ω2)(ω1 +δT )(ω2 +δT )

]
=

1

2δTω2
1ω

2
2

−
ω2

1 +ω1ω2 +ω2
2

2ω3
1ω

3
2(ω1 +ω2)
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Derivation of 2π-exchange NN-potential

iii) Method of unitary transformations [Epelbaum; Okubo et al. (1954)] to project dynamics
of interacting πN-system into the purely nucleonic subspace: H̃N = U†HN,πN U

V (ut)
2π (q) =

g4
A

16f 4
π

∫ d3 l

(2π)3

ω2
1 +ω1ω2 +ω2

2

ω3
1ω

3
2(ω1 +ω2)

[
2~τ1 ·~τ2

(
l2−q2

/4
)2 + 3~σ1 ·(~q×~l )~σ2 ·(~q×~l )

]
Note: corresponding r -space potentials in: M. Taketani et al., Prog. Theor. Phys. 7, 45 (1952)

e.g. isoscalar spin-spin potential: VS (r) =
g4
Amπ

32π3 f4π r4

[
3x K0(2x) + (3+2x2)K1(2x)

]
, x = mπ r

NLO insufficient: no isoscalar central and isovector tensor (σ + ρ in OBE models)
In chiral EFT: two-pion exchange at N2LO with higher-derivative πN-interactions,
c3, c4 large due to low-lying and strongly coupled spin- 3

2 ∆(1232)-resonance

c1,c2,c3,c4 determined in Roy-Steiner-equation analysis of

πN-scattering: Jacobo Ruiz de Elvira & Martin Hoferichter

(Dr. Klaus Erkelenz prize 2015)
c1,3,4

VC (q) =
3g2

A

16πf 4
π

[
2m2
π(2c1 − c3)− c3q2

]
(2m2

π+q2)A(q) + . . .

WT (q) = −
1

q2
WS (q) =

g2
Ac4

32πf 4
π

(4m2
π+q2)A(q) + . . . , A(q) =

1

2q
arctan

q

2mπ

Walter Glöckle liked this (compact form of) chiral NN-potential up to N2LO
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Results for NN phase shifts and mixing angles up to N2LO

Taken from: E. Epelbaum, W. Glöckle, U. Meißner, Nucl. Phys. A 671, 295 (2000)

purple lines: LO, green lines: NLO, red lines: N2LO

Substantial improvement from LO to N2LO, but yet higher accuracy is needed
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Chiral NN-potential beyond one-loop order: 2π-exchange

Based on unitarity, loop-potentials are determined by their imaginary parts
[similar dispersive approach used in Stony Brook and Paris NN-potentials]

q − l

l

A B

qµ

Im(2π−exch.) =
1
2

∫
dΦ2πA B =

|~l |
16πµ

∫ 1

−1
dx A B, x = l̂ ·~v

For N̄N→2π→ N̄N nucleon 4-velocity is (0, i~v) since pN =
√
µ2/4−M2 = i M + . . .

V (q) =
2

π

∫ ∞
2mπ

dµ
µ ImV (iµ)

µ2 + q2
e−(q2+µ2)/2Λ2

(local regulator included)

Short calculation reproduces NLO + N2LO 2π-exchange potentials ∼ L(q),A(q)

Two-loop 2π-exchange from known one-loop πN-amplitudes g±(ω,t), h±(ω,t)

ImVC =
3g2

A

64f 2
πµ

(µ2−2m2
π)Re[g+(0,µ2)], ImWS = µ

2ImWT =
g2

Aµ

128f 2
π

(4m2
π−µ

2)Re[h−(0,µ2)],

ImWC =
k

16πf 2
πµ

∫ 1

0
dx
[
g2

A(2m2
π−µ

2) + 2(g2
A−1)k2x2

]
Re
[ g−(ikx,µ2)

ikx

]
,

ImVS = µ
2ImVT =

3g2
Aµk3

32πf 2
π

∫ 1

0
dx(1−x2)Re

[ h+(ikx,µ2)

ikx

]
, k = |~l | =

√
µ2/4−m2

π

Limitation: method is tailored to extreme nonrelativistic limit
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Chiral NN-potential beyond one-loop order: 3π-exchange

Chiral three-pion exchange NN-potentials: exploit again unitarity

Im(3π−exch.) =
1
2

∫
dΦ3π A B

Integration over 3π phase-space in cm frame, µ > 3mπ is 3π-invariant mass∫
dΦ3π =

1

64π4

∫∫
z2<1

dω1dω2

∫∫
E

dx dy√
1−x2−y2−z2 +2xyz

(E = ellipse with semiaxes
√

1±z)

ω1, ω2 pion-energies, x = ~v ·k̂1, y = ~v ·k̂2, z(ω1, ω2) = k̂1 ·k̂2 directional cosines

Computation of Im-part analogous to total cross section σtot for 2→ 3 reaction

Using spectral-function method one has derived chiral NN-potential up to N4.5LO
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Results for NN phase shifts and mixing angles up to N4.5LO

D. Entem, N. Kaiser, R. Machleidt, Y. Nosyk, Phys. Rev. C 91, 014002 (2015); PRC 92, 064001 (2015)

Similar results by Bochum-group: P. Reinert, H. Krebs, E. Epelbaum, Eur. Phys. J. A 54, 86 (2018)
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Elastic NN-scattering with coupled N∆-channels

Spin- 3
2 ∆(1232)-isobar very important in πN-dynamics (2π-exch. NN-potential)

Coupled N∆-channels efficient approach to deal with nuclear many-body forces

Pertinent 1π- and 2π-exchange diagrams

Planar N∆ and ∆∆ box include reducible part that must be subtracted ∆=293 MeV∫ dl0
2πi

1

(l0−∆)(−l0 + i0)(l20−ω
2
1)(l20−ω

2
2)

=
1

∆ω2
1ω

2
2

−
ω2

1 +ω1ω2 +ω2
2 +∆(ω1 +ω2)

2ω2
1ω

2
2(ω1 +ω2)(ω1 +∆)(ω2 +∆)

,

∫ dl0
2πi

1

(l0−∆)(−l0−∆)(l20−ω
2
1)(l20−ω

2
2)

=
1

2∆ω2
1ω

2
2

−
ω2

1 +ω1ω2 +ω2
2 +∆(ω1 +ω2)

2ω2
1ω

2
2(ω1 +ω2)(ω1 +∆)(ω2 +∆)

Irreducible part of planar N∆-box and ∆∆-box = minus crossed N∆-box
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Elastic NN-scattering with coupled N∆-channels

New feature: spin- 1
2 to spin- 3

2 transition operator ~S† and spin- 3
2 operator ~Σ for ∆

Convenient partial-wave decomposition [J. Golak et al., Eur. Phys. J. A 43, 241 (2010)]

H(L′,S′; L,S|J) =

√
π(2L+1)

2J +1

J∑
mJ =−J

L′∑
m=−L′

∫ 1

−1
dzYL′m(arccos z, 0) Clebsch(L0,SmJ , JmJ )

×Clebsch(L′m,S′(mJ − m), JmJ )〈S′mJ − m|V (~q)|SmJ〉

Extensive coupling of |LSJ〉 states with ∆S = 0, 2 and ∆L = 0, 2, 4, 6

Solve Kadyshevsky equation with coupled (NN,N∆,∆N,∆∆) channels in I =0,1

Effects of N∆ and ∆∆ contact-terms negligible for elastic NN-scattering

Fit nine NN contact-terms up to NLO to empirical S- and P-wave phase-shifts

Deuteron w.f. has (tiny) ∆∆-components: 3S1→ ũ, 3D1→ w̃ , 7D1→ w̃7,
7G1→ ṽ
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Results for NN phase shifts using coupled N∆-channels

blue bands NN only, red bands coupled (NN,N∆,∆N,∆∆) channels up to N2LO

Partial improvement by including coupled channels, bands from Λ=450−700 MeV
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Results for NN phase shifts using coupled N∆-channels

Taken from: S. Strohmeier, N. Kaiser, Nucl. Phys. A 1002, 121980 (2020)

blue bands NN only, red bands coupled (NN,N∆,∆N,∆∆) channels up to N2LO

Improvement in some F - and G-waves, but yet no perfect description

Rather involved N2LO calculation with coupled N∆ channels cannot
provide a substitute for full chiral NN-potential constructed up to N4LO
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Chiral three-nucleon interactions

Three-body forces are indispensable for accurate description of nuclear few- and
many-body systems

Examples: neutron-deuteron scattering differential cross section, spectra of light
nuclei, saturation properties of nuclear matter, neutron matter EoS, . . .

At leading order in chiral EFT 3N-force consists of: long-range 2π-exchange
(c1,3,4), mid-range 1π-exchange (cD), short-range contact (cE ) components

J. Fujita, H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957)

For existing many-body methods to calculate (A > 12) nuclei and nuclear matter it
is technically very challenging to include chiral 3N-forces directly

Alternative and simpler approach: density-depend. in-medium NN-potential Vmed

Consider N1(~p)+N2(−~p)→N1(~p′)+N2(−~p′) onshell in nuclear matter rest frame:
same spin/isospin structures as in vacuum although Galilei invariance is broken
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In-medium NN-potential Vmed

Evaluate one-loop diagrams with in-medium nucleon or particle-hole propagator

i
l0 + iε

− 2πδ(l0)θ(kf − |~l |), density ρ =
2k3

f
3π2

V (1)
med =

g2
Ak3

f
3π2f 4

π

(c3q2 + 2c1m2
π)~τ1 ·~τ2

~σ1 ·~q ~σ2 ·~q
(m2
π + q2)2

, V (6)
med ∼ cE k3

f

V (2,4)
med =

g2
A

4f 2
π

~τ1 ·~τ2
~σ1 ·~q ~σ2 ·~q
m2
π + q2

Γvert (p,q,kf ), V (3)
med =

{
i(~σ1 +~σ2)·(~q×~p )

[
c1,3,4 . . .

]
+ . . .

}
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Skyrme forces

Vmed derived from chiral 3N-force brings repulsion that increases with density
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In-medium NN-potential Vmed

Vmed ∼ c1,3,4, cD,E derived in [J. Holt et al., PRC 81, 024002 (’10)] has found many
applications in calculations of nuclear matter, its thermodynamics, finite nuclei
Subleading chiral 3N-forces parameterfree: Long-range terms built up by many
pion-loop diagrams [V. Bernard, E. Epelbaum, H. Krebs, UGM, PRC 77, 064004 (’08)],
short-range terms and relativistic 1/M-corrections [BEKM, PRC 84, 054001 (’10)]

Extension to subsubleading order: Long and intermediate range components in
[H. Krebs, A. Gasparyan, E. Epelbaum, PRC 85, 054006 (’12); PRC 87, 054007 (’13)]

V ring
3N =

g4
A

32f 6
π

∫ d3 l2
(2π)3

1

(m2
π + l21 )(m2

π + l22 )(m2
π + l23 )

{
2~τ1 ·~τ2

[
~l1 ·~l2~l2 ·~l3 − ~σ1 ·(~l2×~l3)~σ3 ·(~l1×~l2)

]

+~τ1 ·(~τ2×~τ3)~σ1 ·(~l2×~l3)~l1 ·~l2 +
g2

A

m2
π + l22

[
. . .
]}
, ~l1 =~l2 −~q3,

~l3 =~l2 +~q1

Selfclosing of one nucleon-line gives isovector central potential linear in density ρ

V (0)
med = −

g4
Ak3

f
96π3f 6

π

~τ1 ·~τ2

{
2mπ +

m3
π

4m2
π+q2

+
3m2
π+q2

q
arctan

q

2mπ

}
+ . . .
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In-medium NN-potential Vmed

More difficult to evaluate: Concatenations of two nucleon lines→ an example

V (cc)
med =

3g4
A

(4π)4f 6
π

∫ ∞
0

dl
{

l Γ1(l,kf )

[[
m2
π(8p2−q2) + (4p2 +q2)(p2− l2)

] Λ(l)

p2
+

l

p2
(q2−4p2)

+2(2m2
π+q2)(l2− p2−m2

π)Ω(l)
]

+
16k3

f
3

}
, Γ1(l,kf ), Λ(l),Ω(l) logarithmic functions

Vmed given either in analytical form or requires at most one numerical integration
[N. Kaiser et al., PRC 98, 054002 (’18); PRC 100, 014002 (’19); PRC 101, 014001 (’20); nucl-th/2010.02739]

Suitable form to implement chiral 3N-forces into nuclear many-body calculations

Summary
Derivation of basic two-pion exchange potential: difference to traditional
separation of irreducible part from planar box, but it makes V2π simpler
Spectral-function method to go beyond one-loop order: clue is nucleon
four-velocity vµ=(1,~0) for NN-potential and vµ=(0, i~v) for its Im-part
Elastic NN-scattering with coupled (NN,N∆,∆N,∆∆)-channels
Construction of ρ-dep. in-medium NN-potential from chiral 3N-forces

Thank you for your attention!
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