Dr. Klaus Erkelenz Prize Colloquium, 26 April 2022

Structure and Geometry of ${ }^{12} \mathrm{C}$ with Wigner SU(4) Interaction

Shihang Shen
 Forschungszentrum Jülich

Special thanks to Dr. Gabriele Erkelenz and the prize committe
Supervisor: Ulf-G. Meißner
Collaborators: Timo A. Lähde, Dean Lee

Acquaintance with Dr. Klaus Erkelenz's Work

$>$ My PhD work: Relativistic Brueckner-Hartree-Fock Theory for Finite Nuclei

Progress in Particle and Nuclear Physics 109 (2019) 103713

Review
Towards an ab initio covariant density functional theory for nuclear structure

Contents lists available at ScienceDirect
Progress in Particle and Nuclear Physics
journal homepage: www.elsevier.com/locate/ppnp

Shihang Shen ${ }^{\text {a,b,c }}$, Haozhao Liang ${ }^{\text {d,e }}$, Wen Hui Long ${ }^{\text {f,g }}$, Jie Meng ${ }^{\text {a,h,i,* }}$, Peter Ring ${ }^{\mathrm{aj}}$
[51] K. Erkelenz, Phys. Rep. 13 (1974) 191-258

Bonn potential, one of the most successful models for nuclear interaction in the framework of one-bosonexchange, is one of the very few choices that is also suitable for relativistic $a b$ initio calculations.

CURRENT STATUS OF THE RELATIVISTIC TWO-NUCLEON ONE BOSON EXCHANGE POTENTIAL

K. ERKELENZ
Institut für Theoretische Kernphysik, Bonn, W.-Germany

What's Interesting about Carbon-12

$>$ Life element, carbon

> We know little about its shape

is it like an equilateral of α clusters?
F. Hoyle, Astrophys. J. Suppl. Ser. 1, 121 (1954)
H. Morinaga, Phys. Rev. 101, 254 (1956) or as independent particles in the shell model? is the Hoyle state like a linear chain?

Challenge for Theoretical Calculations

$>$ Microscopic cluster models

- resonating group method J. A. Wheeler, Phys. Rev. 52(11), 1083 (1937)
- generator coordinate method with Bloch-Brink cluster wave funnction (1966)
- antisymmetrized molecular dynamics A. Ono, H. Horiuchi, T. Maruyama, and A.
- fermionic molecular dynamces H. Feldmeier, Nucl. Phys. A 515(1), 147 (1990)
-

Ab initio calculations: solving the exact A-body problem, extremely difficult e.g. no-core shell model Navrátil, P., J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000)

Challenge for Theoretical Calculations

> First ab initio calculation for Hoyle state by nuclear lattice effective field theory

- Can we find a way to see the shape of the final states?
- Low-lying spectrum, cluster excitation / single-particle excitation ?

Nuclear Lattice Effective Field Theory

$>$ Nuclear lattice effective field theory (NLEFT)
NO

Review
Lattice simulations for few- and many-body systems
Dean Lee
Department of Physics, North Carolina State University, Raleigh, NC 27695, United States

- 16O, E. Epelbaum et al., PRL 112, 102501 (2014)
- $\alpha-\alpha$ scattering, s . Elhatisari et al., Nature 528, 111 (2015)
- thermodynamics, B.-N. Lu et al., PRL 125, 192502 (2020)
-

Theoretical Framework

$>$ Starting from an initial many-body wave function:

$$
\left|\Phi_{0}\right\rangle=\mathscr{A}\left[\phi_{1}\left(\mathbf{r}_{1}\right) \phi_{2}\left(\mathbf{r}_{2}\right) \ldots \phi_{A}\left(\mathbf{r}_{A}\right)\right]
$$

$\phi(\mathbf{r})=\exp \left(-\left(\mathbf{r}-\mathbf{r}_{0}\right)^{2} / 2 w^{2}\right)$

(20)

$$
\begin{array}{ll}
- & \\
- & (\mathbf{r})=\frac{1}{2} m \omega^{2} r^{2} \\
\begin{array}{ll}
1 d_{3 / 2} \\
2 s_{1 / 2} \\
1 d_{s / 2}
\end{array} \\
\text { (8) }
\end{array}
$$

(2)
$>$ Eculidean time projection with transfer matrix:

$$
M=: \exp \left(-\alpha_{t} H\right): \quad \alpha_{t}=a_{t} / a
$$

with H the many-body Hamiltonian, a_{t} and a the tempral and spatial lattice spacing.

$$
\begin{gathered}
\left|\Phi_{L_{t}}\right\rangle=M^{L_{t}}\left|\Phi_{0}\right\rangle \\
t=L_{t} \\
t=L_{t} / 2 \\
t=0
\end{gathered}
$$

Theoretical Framework

$>$ Hamiltonian consists of kinetic energy and nucleon-nucleon interaction

$$
H=T+V
$$

$>$ In this work we adopt the leading-order simplest possible interaction, Wigner $S U(4)$ symmetric interaction (spin and isospin independent):

$$
\begin{gathered}
V=\frac{C_{2}}{2!} \sum_{\mathbf{n}} \tilde{\rho}(\mathbf{n})^{2}+\frac{C_{3}}{3!} \sum_{\mathbf{n}} \tilde{\rho}(\mathbf{n})^{3} \\
\tilde{\rho}(\mathbf{n})=\sum_{i=1}^{A} \tilde{a}_{i}^{\dagger}(\mathbf{n}) \tilde{a}_{i}(\mathbf{n})+s_{L} \sum_{\left|\mathbf{n}^{\prime}-\mathbf{n}\right|=1} \sum_{i=1}^{A} \tilde{a}_{i}^{\dagger}\left(\mathbf{n}^{\prime}\right) \tilde{a}_{i}\left(\mathbf{n}^{\prime}\right) \\
\tilde{a}_{i}(\mathbf{n})=a_{i}(\mathbf{n})+s_{\mathrm{NL}} \sum_{\left|\mathbf{n}^{\prime}-\mathbf{n}\right|=1} a_{i}\left(\mathbf{n}^{\prime}\right)
\end{gathered}
$$

Sign problem is largely suppressed J.W. Chen, D. Lee, T. Schäfer, PRL, 93, 242302 (2004) Four parametes $C_{2}, C_{3}, s_{\mathrm{L}}$, and s_{NL} will be fitted to binding energy of ${ }^{4} \mathrm{He}$ and ${ }^{12} \mathrm{C}$, radius of ${ }^{12} \mathrm{C}$, and to some extent transition properties.

Interaction seems too simple? Let's wait to see how the descriptions look like

Theoretical Framework

$>$ Auxilary field with Monte-Carlo sampling

$$
\exp \left(-\frac{C \alpha_{t}}{2} \rho^{2}\right):=\sqrt{\frac{1}{2 \pi}} \int_{-\infty}^{\infty} d s: \exp \left(-\frac{1}{2} s^{2}+\sqrt{-C \alpha_{t}} \rho\right):
$$

$>$ Final states is a superposition of millions of configurations (Slater determinants)

$$
\begin{gathered}
\left|\Phi_{L_{t}}\right\rangle=\sum_{s_{i}}\left|\Phi_{s_{i}, L_{t}}\right\rangle \\
\left|\Phi_{s_{i}, L_{t}}\right\rangle=M_{s_{i}}^{L_{i}}\left|\Phi_{0}\right\rangle=\mathscr{A}\left[\phi_{s_{i}, 1}\left(\mathbf{r}_{1}\right) \phi_{s_{i}, 2}\left(\mathbf{r}_{2}\right) \ldots \phi_{s_{i}, A}\left(\mathbf{r}_{A}\right)\right]
\end{gathered}
$$

Theoretical Framework

> Pinhole algorithm
S. Elhatisari et al., PRL 119, 222505 (2017)

A time slice is inserted to sample the positions and spin-isospin indices in the middle time step.

> Density distribution $\rho(r)$ can be obtained by counting how many times the nucleons appears at position r over millons of configurations.

Numerical Details

$>$ Lattice length $L=14.8 \mathrm{fm}$ with spacing $a=1.64 \mathrm{fm}$; temporal lattice spacing $a_{t}=$ $0.55 \mathrm{fm} / \mathrm{c}$.
> Fitted results for $\mathrm{SU}(4)$ interaction

$C_{2}\left[\mathrm{MeV}^{-2}\right]$	$C_{3}\left[\mathrm{MeV}^{-5}\right]$	s_{L}	s_{NL}
-2.15×10^{-5}	6.17×10^{-12}	0.08	0.05

	NLEFT	Exp.
$E\left({ }^{4} \mathrm{He}\right)[\mathrm{MeV}]$	$-28.1(1)$	-28.3
$E\left({ }^{12} \mathrm{C}\right)[\mathrm{MeV}]$	$-91.6(1)$	-92.2
$\left.\mathrm{r}_{\mathrm{c}}{ }^{12} \mathrm{C}\right)[\mathrm{fm}]$	$2.52(1)$	$2.47(2)$

Calculation for Hoyle State

> Hoyle state

Angular momentum projection: SO(3) group reducted to cubic group 0

J	irrepresentation
0	A_{1}
1	T_{1}
2	$E+T_{2}$
3	$A_{2}+T_{1}+T_{2}$
4	$A_{1}+E+T_{1}+T_{2}$

$\phi(\mathbf{r})=\exp \left(-\left(\mathbf{r}-\mathbf{r}_{0}\right)^{2} / 2 w^{2}\right)$

T. A. Lähde et al., JPG 42 (2015) 034012

Web figures from: https://en.wikipedia.org/wiki/Sphere https://math.ucr.edu/home/baez/icosidodecahedron/7.html

Shell-Model States Used as Initial Wave

Low-lying Spectrum

$>$ Spectrum of ${ }^{12} \mathrm{C}$ calculated by NLEFT using SU(4) interaction in comparison with experimental data.

Electromagnetic Properties

> Quadrupole moment and transition rates of ${ }^{12} \mathrm{C}$ calculated by NLEFT, comparing with other theoretical calculations and Experiments.

	NLEFT	FMD	α cluster	NCSM	GCM	Exp.
$Q\left(2_{1}^{+}\right)$	$6.8(3)(1.2)$	-	-	$6.3(3)$	-	$8.1(2.3)$
$Q\left(2_{2}^{+}\right)$	$-35(1)(1)$	-	-	-	-	-
$M\left(E 0,0_{1}^{+} \rightarrow 0_{2}^{+}\right)$	$4.8(3)$	6.5	6.5	-	6.2	$5.4(2)$
$M\left(E 0,0_{1}^{+} \rightarrow 0_{3}^{+}\right)$	$0.4(3)$	-	-	-	3.6	-
$M\left(E 0,0_{2}^{+} \rightarrow 0_{3}^{+}\right)$	$7.4(4)$	-	-	-	47.0	-
$B\left(E 2,2_{1}^{+} \rightarrow 0_{1}^{+}\right.$	$11.4(1)(4.3)$	8.7	9.2	$8.7(9)$	-	$7.9(4)$
$B\left(E 2,2_{1}^{+} \rightarrow 0_{2}^{+}\right)$	$2.4(2)(7)$	3.8	0.8	-	-	$2.6(4)$

Future Experiments can be used as a test.
fermion molecular dynamics (FMD) M. Chernykh et al., PRL 98, 032501 (2007)
a cluster M. Chernykh et al., PRL 98, 032501 (2007)
BEC Y. Funaki et al., PRC 67, 051306 (2003); EPJA 24, 321 (2005)
in-medium no-core shell model (NCSM) A. D'Alessio et al., PRC 102, 011302 (2020)
generator coordinate method (GCM) B. Zhou, PRC 94, 044319 (2016)
Exp. F. Ajzenberg-Selove, NPA 506, 1 (1990); J. Saiz Lomas, PhD thesis, University of York, UK (2021)

Density Profiles

> Charge density distributions (left) and form factors (right) of ground state, Hoyle state, and transitions between them.

Exp. M. Chernykh et al., PRL 105, 022501 (2010) I. Sick and J. S. Mccarthy, NPA 150, 631 (1970)
P. Strehl, Z. Phys. 234 (1970) 416; H. Crannell et al., NPA 758, 399 (2005)

$$
F(q)=\frac{4 \pi}{Z} \int d r r^{2} \rho_{p}(r) j_{0}(q r)
$$

$q\left(\mathrm{fm}^{-1}\right)$

Investigation of the Geometry

> Define a cluster

1. Identify 3 spin-up protons;
2. Find the closest possible of the other 3 types of particles (spin-down proton, spin-up neutron, spin-down neutron);
3. Calculate the rms radius of α cluster defined this way and compare with 4 He calculation.

	$12 \mathrm{C}, 0 _1+$	$12 \mathrm{C}, 0 _2+$	4 He
rms α cluster $[\mathrm{fm}]$	1.65	1.71	1.63

Distribution of Angles

Probability distribution for the two inner angles of the triangle formed by the three

Density Distribution

> Alignment of configurations:
For equilateral triangle type:

1. Align shortest principal axis to x
2. Rotate 1α to $y=0$ (positive z), and (randomly) $+/-120^{\circ}$.

For obtuse triangle type:

1. Align longest principal axis to z;
2. Rotate central α to $x=0$ (positive y).

Cluster Formation

$>$ Density distribution of ${ }^{12} \mathrm{C}$ ground state using (a-d) harmonic oscillator or (e-h) cluster wave function as initial states, with Euclidean projection time ranging from $t=0$ to $0.2 \mathrm{MeV}^{-1}$.

Shell-Model States as Initial Wave

$>\alpha$ cluster structure is less clear due to single-particle excitation, especially when excited to the next shell.

Cluster Excitation? Single-Particle Excitation?

Geometry Information in the Low-Lying Spectrum

$>$ To summarize the geometry properties of each states in the low-lying spectrum of ${ }^{12} \mathrm{C}$ calculated by NLEFT:

- 2 types of shape: equilateral or large angle obtuse triangle.
- α cluster is well maintained (solid triangles) or diminished (dashed ones).

$0+\quad 2+\quad 3-\quad 1-\quad 2-\quad 1+\quad 4-\quad 4+$

Summary

Summary

\square Low-lying spectrum of ${ }^{12} \mathrm{C}$ have been studied by NLEFT using $\mathrm{SU}(4)$ interaction, the agreement with experiment is impressive, not only energies, but also electromanetic transitions and density profiles.
\square A model-independent tomographic scan of the three-dimensional geometry of the nuclear states has been introduced. The Hoyle state and its rotational/vibrational excitations, as already stated in E. Epelbaum et al., PRL 109, 252501 (2012), are found to be an obtuse isosceles triangle with large angle.

Perspectives

$\square{ }^{16} \mathrm{O}$
\square full N3LO interaction
\square
... ...

THANK YOU!

Maris P, Vary JP, Calci A, Langhammer J, Binder S, Roth R., Phys Rev C. (2014) 90:014314 D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003)

PHYSICAL REVIEW C 90, 014314 (2014)
${ }^{12} \mathrm{C}$ properties with evolved chiral three-nucleon interactions
P. Maris, ${ }^{1,{ }^{*}}$ J. P. Vary, ${ }^{1, \dagger}$ A. Calci, ${ }^{2, \ddagger}$ J. Langhammer, ${ }^{2, \S}$ S. Binder, ${ }^{2, \|}$ and R. Roth ${ }^{2, \|}$

