Dr. Klaus Erkelenz Prize Colloquium, 26 April 2022

Structure and Geometry of ¹²C with Wigner SU(4) Interaction

Shihang Shen Forschungszentrum Jülich

Special thanks to Dr. Gabriele Erkelenz and the prize committe

Supervisor: Ulf-G. Meißner Collaborators: Timo A. Lähde, Dean Lee

Acquaintance with Dr. Klaus Erkelenz's Work

My PhD work: Relativistic Brueckner-Hartree-Fock Theory for Finite Nuclei

Contents lists available at ScienceDirect Progress in Particle and Nuclear Physics journal homepage: www.elsevier.com/locate/ppnp Review

Progress in Particle and Nuclear Physics 109 (2019) 103713

Towards an *ab initio* covariant density functional theory for nuclear structure

Shihang Shen ^{a,b,c}, Haozhao Liang ^{d,e}, Wen Hui Long ^{f,g}, Jie Meng ^{a,h,i,*}, Peter Ring ^{a,j}

[51] K. Erkelenz, Phys. Rep. 13 (1974) 191-258

Bonn potential, one of the most successful models for nuclear interaction in the framework of one-bosonexchange, is one of the very few choices that is also suitable for relativistic *ab initio* calculations.

PHYSICS REPORTS (Section C of Physics Letters) 13, no. 5 (1974) 191-258. NORTH-HOLLAND PUBLISHING COMPANY

CURRENT STATUS OF THE RELATIVISTIC TWO-NUCLEON ONE BOSON EXCHANGE POTENTIAL

K. ERKELENZ

Institut für Theoretische Kernphysik, Bonn, W.-Germany

Received April 1974

What's Interesting about Carbon-12

We know little about its shape

Challenge for Theoretical Calculations

- Microscopic cluster models
 - resonating group method J. A. Wheeler, Phys. Rev. 52(11), 1083 (1937)
 - generator coordinate method with Bloch–Brink cluster wave function
 - antisymmetrized molecular dynamics A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Phys. Rev. Lett. 68(19), 2898 (1992)
 - fermionic molecular dynamces H. Feldmeier, Nucl. Phys. A 515(1), 147 (1990)
 -
- Ab initio calculations: solving the exact A-body problem, extremely difficult
 e.g. no-core shell model Navrátil, P., J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000)

Challenge for Theoretical Calculations

First ab initio calculation for Hoyle state by nuclear lattice effective field theory

- > Further questions:
 - Sign problem
 - Can we find a way to see the shape of the final states?

t (MeV-1)

0.02 0.04 0.06 0.08 0.1 0.12

-100

• Low-lying spectrum, cluster excitation / single-particle excitation ?

-90

-100

-110 0 0.02 0.04 0.06 0.08 0.1 0.12

 $t (MeV^{-1})$

Nuclear Lattice Effective Field Theory

Department of Physics, North Carolina State University, Raleigh, NC 27695, United State

- 160, E. Epelbaum et al., PRL 112, 102501 (2014)
- α-α scattering, S. Elhatisari et al., Nature 528, 111 (2015)
- thermodynamics, B.-N. Lu et al., PRL 125, 192502 (2020)

••••

lattice figure from https://www.physics.ncsu.edu/ntg/leegroup/research.html

Starting from an initial many-body wave function:

$$|\Phi_0\rangle = \mathscr{A}[\phi_1(\mathbf{r}_1)\phi_2(\mathbf{r}_2)\dots\phi_A(\mathbf{r}_A)]$$

$$\boldsymbol{\phi}(\mathbf{r}) = \exp\left(-(\mathbf{r} - \mathbf{r}_0)^2/2w^2\right)$$

Eculidean time projection with transfer matrix:

$$M =: \exp(-\alpha_t H): \qquad \alpha_t = a_t/a$$

with H the many-body Hamiltonian, a_t and a the tempral and spatial lattice spacing.

$$|\Phi_{L_t}\rangle = M^{L_t} |\Phi_0\rangle$$

$$t = L_t$$

$$t = L_t/2$$

$$t = 0$$

Hamiltonian consists of kinetic energy and nucleon-nucleon interaction

$$H = T + V$$

In this work we adopt the leading-order simplest possible interaction, Wigner SU(4) symmetric interaction (spin and isospin independent):

$$V = \frac{C_2}{2!} \sum_{\mathbf{n}} \tilde{\rho}(\mathbf{n})^2 + \frac{C_3}{3!} \sum_{\mathbf{n}} \tilde{\rho}(\mathbf{n})^3,$$

$$\tilde{\rho}(\mathbf{n}) = \sum_{i=1}^A \tilde{a}_i^{\dagger}(\mathbf{n}) \tilde{a}_i(\mathbf{n}) + s_L \sum_{|\mathbf{n}'-\mathbf{n}|=1} \sum_{i=1}^A \tilde{a}_i^{\dagger}(\mathbf{n}') \tilde{a}_i(\mathbf{n}'),$$

$$\tilde{a}_i(\mathbf{n}) = a_i(\mathbf{n}) + s_{\mathrm{NL}} \sum_{|\mathbf{n}'-\mathbf{n}|=1} a_i(\mathbf{n}').$$

Sign problem is largely suppressed J.W. Chen, D. Lee, T. Schäfer, PRL, 93, 242302 (2004) Four parametes C_2 , C_3 , s_L , and s_{NL} will be fitted to binding energy of ⁴He and ¹²C, radius of ¹²C, and to some extent transition properties.

Interaction seems too simple? Let's wait to see how the descriptions look like

Auxilary field with Monte-Carlo sampling

Final states is a superposition of millions of configurations (Slater determinants)

$$|\Phi_{L_t}
angle = \sum_{s_i} |\Phi_{s_i,L_t}
angle$$

 $|\Phi_{s_i,L_t}\rangle = M_{s_i}^{L_t}|\Phi_0\rangle = \mathscr{A}[\phi_{s_i,1}(\mathbf{r}_1)\phi_{s_i,2}(\mathbf{r}_2)\dots\phi_{s_i,A}(\mathbf{r}_A)]$

Pinhole algorithm

S. Elhatisari et al., PRL 119, 222505 (2017)

A time slice is inserted to sample the positions and spin-isospin indices in the middle time step.

Density distribution ρ(r) can be obtained by counting how many times the nucleons appears at position r over millons of configurations.

 $t = L_t a_t$

Numerical Details

- Lattice length L = 14.8 fm with spacing a = 1.64 fm; temporal lattice spacing $a_t = 0.55$ fm/c.
- Fitted results for SU(4) interaction

C ₂ [MeV ⁻²]	C ₃ [MeV ⁻⁵]	SL	S _{NL}
-2.15×10 ⁻⁵	6.17×10 ⁻¹²	0.08	0.05

	NLEFT	Exp.
E(4He) [MeV]	-28.1 (1)	-28.3
E(¹² C) [MeV]	-91.6 (1)	-92.2
r _c (¹² C) [fm]	2.52 (1)	2.47 (2)

S. Shen, T. A. Lähde, D. Lee, U.-G. Meißner, arXiv:2202.13596

Calculation for Hoyle State

Hoyle state

Web figures from: https://en.wikipedia.org/wiki/Sphere https://math.ucr.edu/home/baez/icosidodecahedron/7.html

Shell-Model States Used as Initial Wave

Low-lying Spectrum

Spectrum of ¹²C calculated by NLEFT using SU(4) interaction in comparison with experimental data.

S. Shen, T. A. Lähde, D. Lee, U.-G. Meißner, arXiv:2202.13596 S. Shen, T. A. Lähde, D. Lee, U.-G. Meißner, EPJA 57, 276 (2021)

Electromagnetic Properties

Quadrupole moment and transition rates of ¹²C calculated by NLEFT, comparing with other theoretical calculations and Experiments.

5.5 C	NLEFT	FMD	α cluster	NCSM	GCM	Exp.
$Q(2_1^+)$	6.8(3)(1.2)	_	-	6.3(3)	_	8.1(2.3)
$Q(2^{+}_{2})$	-35(1)(1)	_		_	_	-
$M(\bar{E0}, 0^+_1 \to 0^+_2)$	4.8(3)	6.5	6.5	-	6.2	5.4(2)
$M(E0,0^+_1 \rightarrow 0^+_3)$	0.4(3)		_	—	3.6	
$M(E0,0^+_2 \rightarrow 0^+_3)$	7.4(4)		_	—	47.0	-
$B(E2,2_1^+ \rightarrow 0_1^+)$	11.4(1)(4.3)	8.7	9.2	8.7(9)	_	7.9(4)
$B(E2,2^+_1\to 0^+_2)$	2.4(2)(7)	3.8	0.8	—	-	2.6(4)

Future Experiments can be used as a test.

fermion molecular dynamics (FMD) M. Chernykh et al., PRL 98, 032501 (2007)

α cluster M. Chernykh et al., PRL 98, 032501 (2007)

BEC Y. Funaki et al., PRC 67, 051306 (2003); EPJA 24, 321 (2005)

in-medium no-core shell model (NCSM) A. D'Alessio et al., PRC 102, 011302 (2020)

generator coordinate method (GCM) B. Zhou, PRC 94, 044319 (2016)

Exp. F. Ajzenberg-Selove, NPA 506, 1 (1990); J. Saiz Lomas, PhD thesis, University of York, UK (2021)

Density Profiles

Charge density distributions (left) and form factors (right) of ground state, Hoyle state, and transitions between them.

Investigation of the Geometry

- Define α cluster
 - 1. Identify 3 spin-up protons;
 - 2. Find the closest possible of the other 3 types of particles (spin-down proton, spin-up neutron, spin-down neutron);
 - 3. Calculate the rms radius of α cluster defined this way and compare with 4He calculation.

	12C, 0_1+	12C, 0_2+	4He
rms α cluster [fm]	1.65	1.71	1.63

Distribution of Angles

Density Distribution

Alignment of configurations:

For equilateral triangle type:

- 1. Align shortest principal axis to x
- 2. Rotate 1 α to y = 0 (positive z), and (randomly) +/- 120°.

For obtuse triangle type:

- 1. Align longest principal axis to z;
- Rotate central α to x = 0 (positive y).

Web figure from: https://en.wikipedia.org/wiki/Spheroid

Cluster Formation

Density distribution of ¹²C ground state using (a-d) harmonic oscillator or (e-h) cluster wave function as initial states, with Euclidean projection time ranging from t = 0 to 0.2 MeV⁻¹.

y (fm)

Shell-Model States as Initial Wave

 \blacktriangleright α cluster structure is less clear due to single-particle excitation, especially when excited to the next shell.

Cluster Excitation? Single-Particle Excitation?

Geometry Information in the Low-Lying Spectrum

- To summarize the geometry properties of each states in the low-lying spectrum of ¹²C calculated by NLEFT:
 - 2 types of shape: equilateral or large angle obtuse triangle.
 - α cluster is well maintained (solid triangles) or diminished (dashed ones).

Summary

Summary

- Low-lying spectrum of ¹²C have been studied by NLEFT using SU(4) interaction, the agreement with experiment is impressive, not only energies, but also electromanetic transitions and density profiles.
- A model-independent tomographic scan of the three-dimensional geometry of the nuclear states has been introduced. The Hoyle state and its rotational/vibrational excitations, as already stated in E. Epelbaum et al., PRL 109, 252501 (2012), are found to be an obtuse isosceles triangle with large angle.

Perspectives

□ ¹⁶0

full N3LO interaction

THANK YOU!

Maris P, Vary JP, Calci A, Langhammer J, Binder S, Roth R., Phys Rev C. (2014) 90:014314 D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003)

