Roy-Steiner-equation analysis of pion-nucleon scattering

Jacobo Ruiz de Elvira¹ Martin Hoferichter²

¹HISKP and Bethe Center for Theoretical Physics, Universität Bonn

²Institute for Nuclear Theory, University of Washington, Seattle

INSTITUTE for NUCLEAR THEORY Dr. Klaus Erkelenz Preis 2015

Bonn, December 8, 2015

MH, JRE, B. Kubis, U.-G. Meißner, PRL 115 (2015) 092301, 192301, 1510.06039

From meson-exchange models to chiral forces

Pion postulated to explain nuclear force

Yukawa 1935, Nobel prize 1949

$$V(r) \sim rac{e^{-M_{\pi}r}}{r}$$

 \hookrightarrow small mass $M_{\pi} \Leftrightarrow$ long range $\sim 1/M_{\pi}$

- Intermediate-range of the NN potential: exchange of heavier mesons σ, ρ, ω, φ, ...
- Idea of meson-exchange potentials: fit coefficients of meson-exchange operators to experiment
- Pioneered by Erkelenz 1974: Bonn potential
- Phenomenological potentials: CD Bonn, AV18, ...
 - \hookrightarrow describe *NN* data with $\chi^2/dof \sim 1$

Figure courtesy of U.-G. Meißner 0811.1338

Phenomenological potentials

- Beyond single-meson exchange?
- Hierarchy of multi-nucleon forces?
- Consistency between NN and 3N?
- Chiral Effective Field Theory (ChEFT)
 - Based on chiral symmetry of QCD
 - Power counting
 - Systematically improvable
 - Same accuracy with less parameters
 - \hookrightarrow low-energy constants
 - \hookrightarrow modern theory of nuclear forces

		2N force	3N force	4N force
	LO	XH	—	—
)	NLO	ХМАМ	—	—
	N²LO		H++ HX X	_
	N ³ LO	X 4 4 4	↓ ↓	T#144

Figure courtesy of E. Epelbaum 1011.1343

Chiral symmetry of QCD

$$\mathcal{L}_{\text{QCD}} = \bar{q}_L i \not\!\!D q_L + \bar{q}_R i \not\!\!D q_R - \bar{q}_L \mathcal{M} q_R - \bar{q}_R \mathcal{M} q_L - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

- Expansion in momenta p/Λ_{χ} and quark masses $m_q \sim p^2$
 - \hookrightarrow scale separation
- Relates different processes by low-energy theorems
 - Leading order: *F* and *M*, determined by F_{π} and M_{π}
 - \hookrightarrow predict $\pi\pi$ scattering
 - Higher orders: $M_{\pi} \leftrightarrow \pi\pi$ scattering \leftrightarrow scalar radius
 - Nucleon sector: πN coupling $\leftrightarrow g_A$, $m_N \leftrightarrow \pi N$ scattering

- πN scattering appears as subprocess in NN and 3N forces → long-range part of potential
- At given chiral order: same low-energy constants as in πN
 - \hookrightarrow parameter-free prediction
 - \hookrightarrow reduces number of fit parameters
- Interpretation:
 - 1π exchange: πN coupling constant
 - 2π exchange: σ, ρ, \ldots
 - 3π exchange: ω, \ldots

$\hookrightarrow \pi N$ scattering relevant for 2π channel

Scalar content of the nucleon

Decomposition of the nucleon mass

$$m_{N} = \langle N | \underbrace{\frac{\beta_{\text{QCD}}}{2g} F_{\mu\nu}^{a} F_{a}^{\mu\nu}}_{\text{trace anomaly}} + \underbrace{m_{u} \bar{u} u + m_{d} \bar{d} d}_{\text{Higgs}} + m_{s} \bar{s} s + \cdots | N \rangle$$

- Mass largely generated by gluon field energy via the trace anomaly of the QCD energy- momentum tensor $\theta^{\mu}_{\mu} \neq 0$
- Contribution from u- and d-quarks

$$\sigma_{\pi N} = \langle N | \hat{m} (\bar{u}u + \bar{d}d) | N \rangle$$

- $\sigma_{\pi N}$ related to πN scattering via low-energy theorem Cheng, Dashen 1971
- Challenges
 - Amplitude in unphysical region: analytic continuation
 - Isoscalar amplitude: chirally suppressed, $\pi\pi$ rescattering strong, isospin breaking large

Why care about $\sigma_{\pi N}$?

- Scalar coupling of the nucleon
 - $\langle N|m_q\bar{q}q|N\rangle = f_q^N m_N \qquad N \in \{p,n\}$
 - \hookrightarrow Dark Matter, $\mu \rightarrow e$ conversion in nuclei
- Condensates in nuclear matter
- *CP*-violating πN couplings, EDMs

Running coupling of QCD

Asymptotic freedom

$$eta_{ ext{QCD}} = \mu rac{\partial}{\partial \mu} g
onumber \ = -\left(11 - rac{2n_{ ext{f}}}{3}
ight) rac{g^3}{16\pi^2} + \mathcal{O}igg(g^5igg)$$

Gross, Politzer, Wilczek 1973 (Nobel prize 2004)

- QCD strongly coupled at low energies
 - \Rightarrow Perturbation theory fails
 - \Rightarrow Need non-perturbative methods

• Effective field theories: symmetries, separation of scales \hookrightarrow ChPT, ChEFT, #EFT, H π EFT, NREFT, ...

Dispersion relations: analyticity (\simeq causality),

unitarity (\simeq probability conservation), crossing symmetry

 \hookrightarrow Cauchy's theorem, analytic structure

- Lattice: Monte-Carlo simulation
 - \hookrightarrow solve discretized version of QCD numerically

Cauchy's theorem

$$f(s) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{\mathrm{d}s' f(s')}{s' - s}$$

From Cauchy's theorem to dispersion relations

Cauchy's theorem

$$f(s) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{\mathrm{d}s' f(s')}{s' - s}$$

Dispersion relation

$$f(s) = \frac{1}{\pi} \int_{\text{cuts}} \frac{\mathrm{d}s' \operatorname{Im} f(s')}{s' - s}$$

 \hookrightarrow analyticity

From Cauchy's theorem to dispersion relations

Dispersion relation

$$f(s) = \frac{1}{\pi} \int_{\text{cuts}} \frac{\mathrm{d}s' \operatorname{Im} f(s')}{s' - s}$$

 $\hookrightarrow \textbf{analyticity}$

Subtractions

$$f(s) = f(0) + \frac{s}{\pi} \int_{\text{cuts}} \frac{\mathrm{d}s' \operatorname{Im} f(s')}{s'(s'-s)}$$

Dispersion relation

$$f(s) = \frac{1}{\pi} \int_{\text{cuts}} \frac{\mathrm{d}s' \operatorname{Im} f(s')}{s' - s}$$

- \hookrightarrow analyticity
- Subtractions

$$f(s) = f(0) + \frac{s}{\pi} \int_{\text{cuts}} \frac{\mathrm{d}s' \operatorname{Im} f(s')}{s'(s'-s)}$$

- Imaginary part from Cutkosky rules
 - \hookrightarrow forward direction: **optical theorem**
- Unitarity for partial waves

 $\operatorname{Im} f(s) = \rho(s) |f(s)|^2$

Roy equations = Dispersion relations + partial-wave expansion + crossing symmetry + unitarity

• Coupled system of integral equations for partial waves $t'_{J}(s)$ Roy 1971

$$t_J^{\prime}(s) = k_J^{\prime}(s) + \sum_{l'=0}^2 \sum_{J'=0}^{\infty} \int_{4M_{\pi}^2}^{\infty} ds' K_{JJ'}^{ll'}(s,s') \operatorname{Im} t_{J'}^{l'}(s')$$

Roy equations = Dispersion relations + partial-wave expansion + crossing symmetry + unitarity

• Coupled system of integral equations for partial waves $t'_{J}(s)$ Roy 1971

$$\sigma_{\pi}(s) = \sqrt{1 - \frac{4M_{\pi}^2}{s}} = k_J^{l}(s) + \sum_{l'=0}^{2} \sum_{J'=0}^{\infty} \int_{4M_{\pi}^2}^{\infty} ds' K_{JJ'}^{ll'}(s,s') \underbrace{\lim_{s \to 0} \frac{t_{J'}^{l'}(s')}{\sigma_{\pi}(s)}}_{\frac{1}{\sigma_{\pi}(s)} \sin^2 \delta_{JJ'}^{l'}(s')}$$

Roy equations = Dispersion relations + partial-wave expansion + crossing symmetry + unitarity

• Coupled system of integral equations for partial waves $t_J^l(s)$ Roy 1971

Roy equations = Dispersion relations + partial-wave expansion + crossing symmetry + unitarity

Coupled system of integral equations for partial waves t¹/_J(s) Roy 1971

- Roy equations: $\pi\pi$ phase shifts in terms of a_0^0 , a_0^2 Ananthanarayan et al. 2001
- Matching of two-loop ChPT and Roy equations Colangelo, Gasser, Leutwyler 2001
 - Match low-energy polynomials $\Rightarrow \overline{l}_1$, \overline{l}_2 as by-product
 - Scattering lengths in terms of quark-mass LECs \bar{l}_3 , \bar{l}_4

$$\begin{aligned} a_0^0 &= 0.198 \pm 0.001 + 0.0443 \, \text{fm}^{-2} \langle r^2 \rangle_{\pi}^S - 0.0017 \, \overline{l}_3 &= 0.220 \pm 0.005 \\ a_0^2 &= -0.0392 \pm 0.0003 - 0.0066 \, \text{fm}^{-2} \langle r^2 \rangle_{\pi}^S - 0.0004 \, \overline{l}_3 &= -0.0444 \pm 0.0010 \end{aligned}$$

- Roy equations: $\pi\pi$ phase shifts in terms of a_0^0 , a_0^2 Ananthanarayan et al. 2001
- Matching of two-loop ChPT and Roy equations Colangelo, Gasser, Leutwyler 2001
 - Match low-energy polynomials $\Rightarrow \overline{l}_1$, \overline{l}_2 as by-product
 - Scattering lengths in terms of quark-mass LECs \bar{l}_3 , \bar{l}_4

$$\begin{aligned} a_0^0 &= 0.198 \pm 0.001 + 0.0443 \, \text{fm}^{-2} \langle r^2 \rangle_{\pi}^S - 0.0017 \, \overline{l}_3 &= 0.220 \pm 0.005 \\ a_0^2 &= -0.0392 \pm 0.0003 - 0.0066 \, \text{fm}^{-2} \langle r^2 \rangle_{\pi}^S - 0.0004 \, \overline{l}_3 &= -0.0444 \pm 0.0010 \end{aligned}$$

• Prediction tested in K_{e4} and $K
ightarrow 3\pi$ decays NA48/2 2010

 $\begin{aligned} a_0^0 &= 0.2210 \pm 0.0047_{stat} \pm 0.0040_{syst} \\ a_0^2 &= -0.0429 \pm 0.0044_{stat} \pm 0.0028_{syst} \end{aligned}$

Hadronic atoms: constraints for πN

$$\tilde{\mathbf{a}}^{+} = \mathbf{a}^{+} + \frac{1}{4\pi(1+M_{\pi}/m_{p})} \left\{ \frac{4(M_{\pi}^{2} - M_{\pi}^{2})}{F_{\pi}^{2}} c_{1} - 2e^{2} f_{1} \right\}$$

- $\pi H/\pi D$: bound state of π^- and p/d, spectrum sensitive to threshold πN amplitude
 - πH level shift $\Rightarrow \pi^- p \rightarrow \pi^- p$
 - πD level shift \Rightarrow isoscalar $\pi^- N \rightarrow \pi^- N$
 - πH width $\Rightarrow \pi^- p \rightarrow \pi^0 n$
- Combined analysis of πH and πD

$$\begin{aligned} a^{+} &\equiv a^{+}_{0+} = (7.5 \pm 3.1) \times 10^{-3} M_{\pi}^{-1} \\ a^{-} &\equiv a^{-}_{0+} = (86.0 \pm 0.9) \times 10^{-3} M_{\pi}^{-1} \end{aligned}$$

Roy–Steiner equations for πN : differences to $\pi \pi$ Roy equations

Key differences compared to $\pi\pi$ Roy equations

- Crossing: coupling between $\pi N \to \pi N$ (s-channel) and $\pi \pi \to \overline{N}N$ (t-channel) \Rightarrow need a different kind of dispersion relations [Hite, Steiner 1973], [Büttiker et al. 2004]
- Unitarity in t-channel, e.g. in single-channel approximation

- \Rightarrow Watson's theorem: phase of $f_{\pm}^{J}(t)$ equals δ_{IJ}
- \hookrightarrow solution in terms of Omnès function

[Watson 1954] [Muskhelishvili 1953, Omnès 1958]

• Large pseudo-physical region in t -channel

 $\hookrightarrow \bar{K}K$ intermediate states for s-wave in the region of the $f_0(980)$

Limited range of validity

$$\sqrt{s} \le \sqrt{s_m} = 1.38 \, \mathrm{GeV}$$

$$\sqrt{t} \le \sqrt{t_m} = 2.00 \,\mathrm{GeV}$$

Input/Constraints

- S- and P-waves above matching point
 s > s_m (t > t_m)
- Inelasticities
- Higher waves (D-, F-, · · ·)
- Scattering lengths from hadronic atoms

Baru et al. 2011

Output

- S- and P-wave phase-shifts at low energies $s < s_m (t < t_m)$
- Subthreshold parameters
 - ⊳ Pion-nucleon *o*-term
 - ▷ Nucleon form factor spectral functions
 - ▷ ChPT LECs

Solving t-channel: P, D and F waves up to \overline{NN}

M. Hoferichter & J. Ruiz de Elvira (INT & HISKP)

Roy–Steiner-equation analysis of πN scattering

RS solution in general consistent with KH80 results

- Parameterize S and P waves up to W < W_m
 - Using SAID partial waves as starting point
- Impose as constraints the hadronic atom scattering lengths
- Introduce as many subtractions as necessary to match d.o.f
- Minimize difference between LHS and the RHS on a grid of points W_i

$$\chi^{2} = \sum_{l,l_{s},\pm} \sum_{j=1}^{N} \frac{\left(\operatorname{\mathsf{Re}} f_{l\pm}^{l_{s}}(W_{j}) - F[f_{l\pm}^{l_{s}}](W_{j})\right)^{2}}{\operatorname{\mathsf{Re}} f_{l\pm}^{l_{s}}(W_{j})}$$

 $F[f_{l+}^{l_s}](W_j) \equiv$ right hand side of RS-equations

• Parametrization and subthreshold parameters are the fitting parameters

[Gasser, Wanders 1999]

Solving s-channel: results

M. Hoferichter & J. Ruiz de Elvira (INT & HISKP)

Uncertainties: s-channel partial waves

Uncertainties: imaginary part t-channel partial waves

Threshold parameters

- Threshold parameters defined as: Re $f'_{l\pm}(s) = q^{2l} \{a'_{l\pm} + b'_{l\pm}q^2 + \cdots \}$
- Extracted from hyperbolic sum rules

	RS	KH80
a^+_{0+} [10 ⁻³ M^{-1}_{π}]	-0.9 ± 1.4	-9.7 ± 1.7
a_{0+}^{-} [10 ⁻³ M_{π}^{-1}]	85.4 ± 0.9	91.3 ± 1.7
a_{1+}^+ [10^{-3} M_\pi^{-3}]	131.2 ± 1.7	132.7 ± 1.3
a_{1+}^{-} [10^{-3} M_{\pi}^{-3}]	-80.3 ± 1.1	-81.3 ± 1.0
a_{1-}^+ [10 ⁻³ M_{π}^{-3}]	-50.9 ± 1.9	-56.7 ± 1.3
a_{1-}^{-} [10 ⁻³ M_{π}^{-3}]	-9.9 ± 1.2	-11.7 ± 1.0
$b^+_{0+} [10^{-3} M^{-3}_{\pi}]$	-45.0 ± 1.0	-44.3 ± 6.7
b_{0+}^{-} [10 ⁻³ M_{π}^{-3}]	$\textbf{4.9} \pm \textbf{0.8}$	13.3 ± 6.0

- Reasonable agreement with KH80 but for the scattering lengths
- Disagreement in the scattering lengths in $\sim 4\sigma$

Results for the sigma-term

$$\sigma_{\pi N} = F_{\pi}^2 \left(d_{00}^+ + 2M_{\pi}^2 d_{01}^+ \right) + \Delta_D - \Delta_\sigma - \Delta_R$$

subthreshold parameters output of the Roy-Steiner equations

 $d_{00}^{+} = -1.36(3)M_{\pi}^{-1} \qquad [\text{KH}: -1.46(10)M_{\pi}^{-1}]$ $d_{01}^{+} = 1.16(2)M_{\pi}^{-3} \qquad [\text{KH}: 1.14(2)M_{\pi}^{-3}]$

- $\Delta_D \Delta_\sigma = -(1.8 \pm 0.2) \text{ MeV}$ [MH at al. 2012], $|\Delta_R| \lesssim 2 \text{ MeV}$
- Isospin breaking in the CD theorem shifts $\sigma_{\pi N}$ by +3.0 MeV
- Final results:

 $\sigma_{\pi N} = (59.1 \pm 1.9_{
m RS} \pm 3.0_{
m LET}) \, {
m MeV}$ =(59.1 \pm 3.5) MeV

• $\sigma_{\pi N}$ depends linearly on the scattering lengths

$$\sigma_{\pi N} = 59.1 + \sum_{l_s} c_{l_s} \Delta a_{0+}^{l_s}$$

- KH input $\Rightarrow \sigma_{\pi N} = 46 \text{ MeV}$
 - \hookrightarrow to be compared with $\sigma_{\pi N} = 45 \text{ MeV}$
- compare also $\sigma_{\pi N} \sim (64 \pm 8)$ MeV

[Gasser, Leutwyler, Socher, Sainio 1988]

[Pavan et al. 2002]

[MH, JRE, Kubis, Meißner]

[Bernard, Kaiser, Meißner 1996]

• Recent lattice determination of $\sigma_{\pi N}$ from the BMW collaboration

 $\sigma_{\pi N} = 38(3)(3)$ MeV

[Durr. et al. 2015]

• The linear dependence of $\sigma_{\pi N}$ on the scattering lengths introduces an additional constraint

• Fully inconsistent with the hadronic atom phenomenology

Matching to ChPT at the subthreshold point:

- Chiral expansion expected to work best at subthreshold point
 - Maximal distance from threshold singularities
 - $rac{\pi N}{\pi N}$ amplitude can be expanded as polynomial
- Preferred choice for NN scattering due to proximity of relevant kinematic regions

Express the subthreshold parameters in terms of the LECs to $\mathcal{O}(p^4)$

$$d_{00}^{+} = -\frac{2M_{\pi}^{2}(2\tilde{c}_{1} - \tilde{c}_{3})}{F_{\pi}^{2}} + \frac{g_{a}^{2}(3 + 8g_{a}^{2})M_{\pi}^{3}}{64\pi F_{\pi}^{4}} + M_{\pi}^{4} \left\{ \frac{16\tilde{e}_{14}}{F_{\pi}^{2}} - \frac{2c_{1} - c_{3}}{16\pi^{2}F_{\pi}^{4}} \right\}$$

- Chiral πN amplitude to $\mathcal{O}(p^4)$ depends on 13 low-energy constants
- Roy-Steiner system contains 10 subtraction constants
 - Calculate remaining 3 from sum rules
 - ▷ Invert the system to solve for LECs

Chiral low-energy constants

	NLO	N ² LO	N ³ LO
c ₁ [GeV ⁻¹]	-0.74 ± 0.02	-1.07 ± 0.02	-1.11 ± 0.03
<i>c</i> ₂ [GeV ^{−1}]	1.81 ± 0.03	3.20 ± 0.03	3.13 ± 0.03
c ₃ [GeV ^{−1}]	-3.61 ± 0.05	-5.32 ± 0.05	-5.61 ± 0.06
c ₄ [GeV ⁻¹]	2.17 ± 0.03	3.56 ± 0.03	4.26 ± 0.04
$ar{d}_1 + ar{d}_2 [{ m GeV}^{-2}]$	—	1.04 ± 0.06	7.42 ± 0.08
\bar{d}_3 [GeV $^{-2}$]	—	-0.48 ± 0.02	-10.46 ± 0.10
<i>d</i> ₅ [GeV ^{−2}]	_	0.14 ± 0.05	0.59 ± 0.05
$ar{d}_{14} - ar{d}_{15} [{ m GeV}^{-2}]$	—	-1.90 ± 0.06	-12.18 ± 0.12
ē₁₄ [GeV ⁻³]	_	_	0.89 ± 0.04
ē ₁₅ [GeV ⁻³]	_	_	-0.97 ± 0.06
ē ₁₆ [GeV ⁻³]	_	_	-2.61 ± 0.03
ē ₁₇ [GeV ⁻³]	_	_	0.01 ± 0.06
ē ₁₈ [GeV ⁻³]	_	_	-4.20 ± 0.05

- Subthreshold errors tiny, chiral expansion dominates uncertainty
- \bar{d}_i at N³LO increase by an order of magnitude

 \hookrightarrow due to terms proportional to $g_A^2(c_3 - c_4) = -16 \text{ GeV}^{-1}$

- \hookrightarrow mimic loop diagrams with Δ degrees of freedom
- What's going on with chiral convergence?
 - \hookrightarrow look at convergence of threshold parameters with LECs fixed at subthreshold point

	NLO	N ² LO	N ³ LO	RS
$a_{0+}^+ [10^{-3} M_{\pi}^{-1}]$	-23.8	0.2	-7.9	-0.9 ± 1.4
a_{0+}^{-} [10 ⁻³ M_{π}^{-1}]	79.4	92.9	59.4	85.4 ± 0.9
a_{1+}^+ [10 ⁻³ M_{π}^{-3}]	102.6	121.2	131.8	131.2 ± 1.7
a_{1+}^{-} [10 ⁻³ M_{π}^{-3}]	-65.2	-75.3	-89.0	-80.3 ± 1.1
a_{1-}^+ [10 ⁻³ M_{π}^{-3}]	-45.0	-47.0	-72.7	-50.9 ± 1.9
a_{1-}^{-} [10 ⁻³ M_{π}^{-3}]	-11.2	-2.8	-22.6	-9.9 ± 1.2
$b_{0+}^+ [10^{-3} M_{\pi}^{-3}]$	-70.4	-23.3	-44.9	-45.0 ± 1.0
b_{0+}^{-} [10 ⁻³ M_{π}^{-3}]	20.6	23.3	-64.7	4.9 ± 0.8

- N³LO results bad due to large Delta loops
- Conclusion: lessons for few-nucleon applications
 - either include the ∆ to reduce the size of the loop corrections or use LECs from subthreshold kinematics
 - error estimates: consider chiral convergence of a given observable, difficult to assign a global chiral error to LECs

work in progress

The "ruler plot" vs. ChPT

Lattice QCD simulations can be performed at different quark/pion masses

Pion mass dependence of m_N up to NNNLO in ChPT, using

Input from Roy–Steiner solution

 \hookrightarrow range of convergence of the chiral expansion is very limited

 \hookrightarrow huge cancellation amongst terms to produce a linear behavior

Summary

- Derived a closed system of Roy–Steiner equations for πN
- Numerical solution and error analysis of the full system of RS eqs.
- Precise determination of the $\sigma_{\pi N}$
 - Roy-Steiner formalism reproduces KH80 result with KH80 input
 - \triangleright With modern input for scattering lengths and coupling constant $\sigma_{\pi N}$ increases
- Precise determination of threshold parameters
- Extraction of the ChPT LECs
- Study of the chiral convergence

Outlook

- Dispersive determination of Δ pole parameters
- Matching to ChPT with explicit ∆'s
 - \triangleright LECs extraction and study of the chiral convergence
 - \triangleright Large-*N_c* constraints on \triangle LECs

- Proton Radius Puzzle
 - \hookrightarrow strong constraints from analyticity and unitarity

- first inelastic correction $\hookrightarrow \pi\pi$ continuum, rigorous constraint fixed from:
 - RS t-channel partial waves
 - \triangleright pion form factor
- update of Höhler spectral functions, including also isospin breaking

criticism by Lee et al. 2015

Spare slides

Roy-Steiner equations for πN : flow of information

M. Hoferichter & J. Ruiz de Elvira (INT & HISKP)

э

- Statistical errors (at intermediate energies)
 - > important correlations between subthreshold parameters
 - > shallow fit minima
 - \Rightarrow Sum rules for subthreshold parameters become essential to reduce the errors
- Input variation (small)
 - small effect for considering s-channel KH80 input
 - \triangleright very small effects from L > 5 s-channel PWs
 - \triangleright small effect from the different S-wave extrapolation for t > 1.3 GeV
 - \triangleright negligible effect of ρ' and ρ''
 - ▷ very significant effects of the D-waves ($f_2(1275)$)
 - F-waves shown to be negligible
- matching conditions (close to Wm)
- scattering length (SL) errors (on S-waves and subthreshold parameters)
 - \triangleright very important for the $\sigma_{\pi N}$