The spectrum of nucleon and Delta resonances in a dynamical coupled-channel model

Deborah Rönchen

HISKP, Bonn University

In collaboration with:

M. Döring, H. Haberzettl, J. Haidenbauer, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner,

and K. Nakayama

November 20, 2014

Motivation and Introduction

Data analysis and fit results Outlook Strong interactions Resonances The Jülich model

Fundamental forces in the standard model particle physics

Hadron production in e^+e^- collisions:

electroweak interaction

strong interaction

ightarrow fundamental forces in nature

Strong force:

- Fundamental particles: quarks (q) (almost free at high energies)
- Observed particles: hadrons (low and medium energies)
 - Mesons (qq̄ states)
 - Baryons (qqq, qqq states)

 $\, {\stackrel{\scriptstyle \leftarrow}{\mapsto}} \ {\rm protons} \ {\stackrel{\scriptstyle \leftarrow}{\otimes}} \ {\rm neutrons} \ {\rightarrow} \ {\rm matter} \\$

(+ exotic states ...)

Big question:

How do quarks and gluons form hadrons?

Motivation and Introduction

Data analysis and fit results Outlook Strong interactions Resonances The Jülich model

Fundamental forces in the standard model particle physics

 \rightarrow fundamental forces in nature

Strong force:

- Fundamental particles: quarks (q) (almost free at high energies)
- Observed particles: hadrons (low and medium energies)
 - Mesons (qq̄ states)
 - Baryons (qqq, qqq attes)

(+ exotic states ...)

Big question:

How do quarks and gluons form hadrons?

Strong interactions

Interaction between colored quarks, mediated by gluons

• Quantum Chromodynamics (QCD): gauge filed theory of the strong interactions

picture from PDG

3/34

Experimental tests of strong interactions at medium energies

 \rightarrow measurements of hadronic cross sections and asymmetries

source: ELSA; data: ELSA, JLab, MAMI

What are those bumps??

- energy and angular momentum excitations of baryons?
- background processes?
- something else?

Strong interactions Resonances The Jülich model

Experimental tests of strong interactions at medium energies

 \rightarrow measurements of hadronic cross sections and asymmetries

source: ELSA; data: ELSA, JLab, MAMI

What are those bumps??

- energy and angular momentum excitations of baryons?
- background processes?
- something else?

Strong interactions Resonances The Jülich model

The excited hadron spectrum: Connection between experiment and QCD in the non-perturbative regime

Excited hadron spectrum: testing ground for theories of the strong force at low and medium energy

⇒ Partial wave decomposition:

decompose data with respect to a conserved quantum number:

total **angular** momentum and parity J^P

 m_{π} = 396 MeV [Edwards *et al.*, Phys.Rev. D84 (2011)]

Missing resonance problem

Theoretical description of a scattering process

$$S = 1 + iT$$

• Lippmann-Schwinger equation: T = V + VGT V: interaction potential, G: Green's function

choose basis: $\langle L'S'p'|T''|LSp \rangle \rightarrow$ partial wave amplitude L_{2I2J}

$$\langle L'S'p'|T^{IJ}|LSp\rangle = \langle L'S'p'|V^{IJ}|LSp\rangle + \int_{0}^{\infty} dq \ q^{2} \langle L'S'p'|V^{IJ}|LSq\rangle \ G \ \langle LSq|T^{IJ}|LSp\rangle$$

- construct V, e.g. with polynomials, effective Lagrangians ...
- T should respect unitarity and analyticity

6/3<u>4</u>

Motivation and Introduction

Data analysis and fit results Outlook Strong interactions Resonances The Jülich model

Excited states / Resonances

$$J^P = 1/2^+, I = 3/2$$

Points: SAID 2006 and CM12

Breit-Wigner parameterization:

$$\mathcal{M}_{ba}^{Res} = -\frac{g_b g_a}{E^2 - M_{BW}^2 + iE\Gamma_{BW}}$$

- M_{BW} , Γ_{BW} channel dependent

- background? overlapping resonances? thresholds?

Resonances: poles in the *T*-matrix

- Pole position *E*₀ is the same in all channels
- thresholds: branch points

$$\operatorname{Re}(E_0) = \text{``mass''}$$

 $-2\operatorname{Im}(E_0) = \text{``width''}$
residues \rightarrow branching
ratios

Strong interactions Resonances The Jülich model

Thresholds of inelastic channels

opening of inelastic channels \Rightarrow branch point and new Riemann sheet

 Motivation and Introduction
 Strong interaction

 Data analysis and fit results
 Resonances

 Outlook
 The Jülich model

A dynamical coupled-channel approach: the hadronic Jülich model

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial wave basis

$$\begin{aligned} \langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle &= \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \\ \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle \end{aligned}$$

- potentials V constructed from effective \mathcal{L}
- s-channel diagrams: T^P genuine resonance states
- t- and u-channel: T^{NP} dynamical generation of poles partial waves strongly correlated

A dynamical coupled-channel approach: the hadronic Jülich model

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial wave basis

$$L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle$$

● *J* ≤ 9/2

• Unitarity (2 body) and analyticity respected

9/34

Strong interactions Resonances The Jülich model

Analysis of pion-induced reactions

- calculate observables from *T*-matrix
- fit **free parameters** of *T* to data or partial wave amplitudes

$$\sigma = \frac{1}{2} \frac{4\pi}{p^2} \sum_{JLS,L'S'} |\tau_{LS}^{JL'S'}|^2$$

with $\tau_{fi} = -\pi \sqrt{\rho_i \rho_i} T_{fi}$
 ρ : phase factor

s-channel: resonances (T^P)

 $m_{bare} + f_{\pi NN^*}$

\Rightarrow search for poles in the complex energy plane of T

Deborah Rönchen

N and Δ resonances in a dynamical coupled-channel model

10/3<u>4</u>

• Field theoretical approaches : ANL-Osaka, DMT, Jülich-Athens-Washington, ...

Focus of the present analysis:

- extraction of resonance parameters
- \Rightarrow flexible, phenomenological parameterization of photo excitation
 - Advantage: easy to implement, analyze large amounts of data
 - Disadvantage: no information on microscopic reaction dynamics

Strong interactions Resonances The Jülich model

Photoproduction in a semi-phenomenological approach

 $m=\pi,\,\eta$, B=N, Δ

12/34

- $T_{\mu\kappa}$: Jülich hadronic T-matrix
- \rightarrow Watson's theorem fulfilled by construction \rightarrow analyticity of T: extraction of resonance parameters

Phenomenological potential:

 $\tilde{\gamma}^a_{\mu'}, \gamma^a_{\mu;i}$: hadronic vertices \rightarrow correct threshold behaviour, cancellation of singularity at $E = m^b_i$ i: resonance number per multipole; μ : channels $\pi N, \eta N, \pi \Delta$

Photoproduction of pseudoscalar meson

- Photocouplings of resonances
- high precision data from ELSA, MAMI, JLab... \rightarrow resolve questionable/find new states

Photoproduction amplitude of pseudoscalar mesons:

Chew, Goldberger, Low, and Nambu, Phys. Rev. 106, 1345 (1957)

 \vec{q} : meson momentum \vec{k} ($\vec{\epsilon}$): photon momentum (polarization)

 $\hat{\mathcal{M}} = F_1 \vec{\sigma} \cdot \vec{\epsilon} + iF_2 \vec{\epsilon} \cdot (\hat{k} \times \hat{q}) + F_3 \vec{\sigma} \cdot \hat{k} \hat{q} \cdot \vec{\epsilon} + F_4 \vec{\sigma} \cdot \hat{q} \hat{q} \cdot \vec{\epsilon}$

 F_i : complex functions of the scattering angle, constructed from multipole amplitudes $M_{\mu\gamma}^{IJ}$

⇒ 16 polarization observables: asymmetries composed of beam, target and/or recoil polarization measurements

⇒ Complete Experiment: unambiguous determination of the amplitude

8 carefully selected observables, including

Chiang and Tabakin, PRC 55, 2054 (1997)

- single and double polarization observbales
- measurement of beam, target and recoil polarization

 \mapsto easier to realize in K than in π or η photoproduction

13/34

 \hookrightarrow Caveat: in reality more observables needed (data uncertainties)

Photon-induced reactions Resonance parameters

Data analysis and Fit Results

Photon-induced reactions Resonance parameters

Combined analysis of pion- and photon-induced reactions

Fit parameter:

• $\pi N \to \pi N$ $\pi^- p \to \eta n, \ K^0 \Lambda, \ K^0 \Sigma^0, \ K^+ \Sigma^ \pi^+ p \to \ K^+ \Sigma^+$

 $m_{bare} + f_{\pi NN^*}$

\Rightarrow 128 free parameters

11 N^{*} resonances × (1 m_{bare} + couplings to πN , ρN , ηN , $\pi \Delta$, $K\Lambda$, $K\Sigma$)) + 10 Δ resonances × (1 m_{bare} + couplings to πN , ρN , $\pi \Delta$, $K\Sigma$)

Deborah Rönchen

Photon-induced reactions Resonance parameters

Data base

simultaneous fit to π - and γ -induced reactions

	Fit A Fit B	
	<u></u>	
$\pi N ightarrow \pi N$	PWA SAID 2006 [Arndt et al., PRC 74 (2006)]	
$\pi^- p \rightarrow \eta n$	$d\sigma/d\Omega$, P	
$\pi^- p \rightarrow \ K^0 \Lambda$	$d\sigma/d\Omega$, P, eta	 More single/double polarization:
$\pi^- p \rightarrow \ K^0 \Sigma^0$	$d\sigma/d\Omega$, P	$E, C_{x'1}, C_{z'1},$
$\pi^- p \rightarrow K^+ \Sigma^-$	$d\sigma/d\Omega$	<i>T</i> , <i>P</i> , <i>H</i> (ELSA 2014)
$\pi^+ p \rightarrow K^+ \Sigma^+$	$d\sigma/d\Omega$, P , eta	$(\gamma p o \pi^0 p)$
	\sim 6000 data points	\Rightarrow predictions
$\gamma p ightarrow \pi^0 p$	$d\sigma/d\Omega$, Σ, Ρ, Τ, Δ σ_{31} , G, Η	
$\gamma p \to \pi^+ n$	$d\sigma/d\Omega$, Σ , P, T, $\Delta\sigma_{31}$, G, H	
$\gamma p ightarrow \eta p$	$d\sigma/d\Omega, P, \Sigma \qquad d\sigma/d\Omega, P, \Sigma, T, F$	
	29,761 data points 30,049 data points	_ {

16/34

Photon-induced reactions Resonance parameters

$\pi N \rightarrow \pi N$ partial wave amplitudes

selected results, preliminary

Fit A and Fit B

Notation: L_{2/2}

• Input to fit: energy-dependent partial wave analysis, GWU/SAID 2006 up to J = 9/2 ($\sim H_{39}$)

Photon-induced reactions Resonance parameters

$\pi N \to \eta N, K\Lambda$

selected results, preliminary

$\pi N \to K\Sigma$

selected results, preliminary

Photon-induced reactions Resonance parameters

Pion photoproduction: selected fit results

[7] Ahrens 2004 (MAMI)
[8] Bartalini 2002 (GRAAL)
[9] Ajaka 2000 (GRAAL)
[10] Ahrens 2005 (MAMI)
[11] Ahrens 2006 (MAMI)

Photon-induced reactions

Double polarization in $\gamma p \rightarrow \pi^0 p$ Data NOT included in fit

90 120 150 30 60 90 120 150

0

selected results, preliminary

60 Deborah Rönchen

90 120 150 0 30 60 90 120 150

30

0

21/34

Eta photoproduction: $\gamma p \rightarrow \eta p$

- ${\ensuremath{\, \circ }}$ Inelastic channels \rightarrow possibility resolve "missing resonance" problem
- Data quality in $\pi^- p \rightarrow \eta n$:

data points $\pi^- p \rightarrow \eta n$: 732 $\gamma p \rightarrow \eta p$: 6164

data situation much better in $\gamma p \to \eta p$

 \Rightarrow Fix $N^*N\eta$ coupling from photoproduction (to a large extent)

[1] McNicoll et al. 2010 (MAMI), [2] Williams et al. 2009 (JLab), [3] Credé et al. 2009 (ELSA)

Beam asymmetry

^[4] Bartalini et al. 2007 (GRAAL), [5] Elsner et al. 2007 (ELSA)

Deborah Rönchen

- Recoil polarization
 - only 7 data points in total -

N and Δ resonances in a dynamical coupled-channel model 23/34

Photon-induced reactions Resonance parameters

T and *F* in $\gamma p \rightarrow \eta p$

24/34

Photon-induced reactions Resonance parameters

Partial wave contribution to *F* in $\gamma p \rightarrow \eta p$

preliminary

Switch off different PWs in Fit B

Photon-induced reactions Resonance parameters

Partial wave contribution to *F* in $\gamma p \rightarrow \eta p$

preliminary

Switch off different PWs in Fit B

Deborah Rönchen

Photon-induced reactions Resonance parameters

Partial wave contribution to *F* in $\gamma p \rightarrow \eta p$

preliminary

Switch off different PWs in Fit B

Resonance parameters

Resonance content: I=1/2

preliminary

Photon-induced reactions Resonance parameters

Resonance parameters

selected results, preliminary

		ReE ₀		-21m <i>E</i> 0		$\Gamma_{\pi N}/\Gamma_{tot}$		$\Gamma_{\eta N}/\Gamma_{tot}$	
		[MeV]		[MeV]		[%]		[%]	
	${\rm fit} \rightarrow$	А	В	А	В	А	В	A	В
N(1535) 1/2 ⁻		1497	1499	105	104	43	43	61	61
N(1650) 1/2 ⁻		1664	1672	126	137	49	54	8	8
N(1710) 1/2 ⁺		1611	1655	140	125	4.0	4.9	9.0	45.5
N(1720) 3/2 ⁺		1711	1710	209	219	5.1	3.9	0.2	0.1

 $\frac{\Gamma_{\mu}}{\Gamma_{tot}} = \frac{|r_{\pi N \to \mu}|^2}{|r_{\pi N \to \pi N}|(\Gamma_{tot}/2)}$

 $r_{\pi N \to \mu}$: residue, $\Gamma_{tot} = -2 \text{Im} E_0$: resonance width

Photon-induced reactions Resonance parameters

Photocouplings at the pole

selected results, preliminary

$$\tilde{A}_{pole}^{h} = A_{pole}^{h} e^{i\vartheta^{h}}$$

$$h = 1/2, 3/2$$

$$\tilde{A}_{pole}^{h} = I_{F} \sqrt{\frac{q_{p}}{k_{p}} \frac{2\pi (2J+1)E_{0}}{m_{N} r_{\pi N}}} \operatorname{Res} A_{L\pm}^{h}$$

$$Res A_{L\pm}^{h}$$

$$F = \frac{1}{2} \frac{1}$$

		$A_{pole}^{1/2}$		$\vartheta^{1/2}$		$A_{pole}^{3/2}$		$\vartheta^{3/2}$	
		$[10^{-3} \text{ GeV}^{-1/2}]$		[deg]		$[10^{-3} \text{ GeV}^{-1/2}]$		[deg]	
	${\rm fit} \rightarrow$	1	2	1	2	1	2	1	2
N(1535) 1/2 ⁻		106.5	106.0	-34.7	-32.3				
N(1650) 1/2 ⁻		60.6	59.1	-70.2	-65.3				
N(1710) 1/2 ⁺		-6.6	21.0	-31.1	-10.1				
N(1720) 3/2 ⁺		54.7	38.6	-12.8	-29.4	38.5	31.9	33.6	31.7

1-: icocnin factor

Summary

Extraction of the N^{\ast} and Δ resonance spectrum

from a simultaneous analysis of pion- and photon-induced reactions

• DCC analysis of $\pi N \rightarrow \pi N$, ηN , $K\Lambda$ and $K\Sigma$

The Jülich model: lagrangian based, unitarity & analyticity respected \rightarrow analysis of over 6000 data points (PWA, $d\sigma/d\Omega$, P, β)

• π and η photoproduction in a semi-phenomenological approach

hadronic final state interaction: Jülich DCC analysis

- ightarrow analysis of more than 30 000 data points for single and double polarization observables
- \rightarrow extraction of resonance parameters (poles & residues)

Outlook

Kaon photoproduction: preliminary results for $\gamma p \rightarrow K^+ \Lambda$

simultaneous fit of $\gamma p \rightarrow \pi^0 p$, $\pi^+ n$, ηp , $K^+ \Lambda$ and $\pi N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$

Differential cross section

Recoil polarization

After this ...

 More double polarization observables in meson photoproduction to be published in the near future

•
$$\gamma N \to K\Sigma$$

• Two meson photorpoduction e.g. $\gamma p \rightarrow \pi^0 \eta p$ from ELSA

Error analysis

- $\chi^2 + 1$ criterion: determination of the non-linear parameter error
 - error of parameter p_i determined by range of p_i such that χ^2_{\min} rises by less than 1
 - \Rightarrow error on pole positions and residues.

BUT: numerically not possible with \geq 500 free parameters

Work in progress: Developing of techniques to apply Monte-Carlo error propagation using bootstrap method (M. Döring et al.)

Matching to lattice Prediction & analysis of lattice data

Scattering equation:

$$T(q'',q') = V(q'',q') + \int_{0}^{\infty} dq \, q^2 \, V(q'',q) \frac{1}{z - E_1(q) - E_2(q) + i\epsilon} \, T(q,q')$$

Discretization of momenta in the scattering equation:

$$\int \frac{\vec{d}^{3}q}{(2\pi)^{3}} f(|\vec{q}|^{2}) \quad \to \quad \frac{1}{L^{3}} \sum_{\vec{n}_{i}} f(|\vec{q}_{i}|^{2}), \quad \vec{q}_{i} = \frac{2\pi}{L} \vec{n}_{i}, \quad \vec{n}_{i} \in \mathbb{Z}^{3}$$

$$T(q'',q') = V(q'',q') + \frac{2\pi^2}{L^3} \sum_{i=0}^{\infty} \vartheta(i) V(q'',q_i) \frac{1}{z - E_1(q_i) - E_2(q_i)} T(q_i,q'),$$

 $\vartheta^{(P)}(i)$ series

- Study finite-volume effects
- Predict lattice spectra

Thank you for your attention!

T, P in $\gamma p \rightarrow \pi^0 p$ Data NOT included in the Fit

 \sim

Deborah Rönchen

Details of the formalism

Polynomials:

$$P_{i}^{P}(E) = \sum_{j=1}^{n} g_{i,j}^{P} \left(\frac{E - E_{0}}{m_{N}}\right)^{j} e^{-g_{i,n+1}^{P}(E - E_{0})}$$

$$P_{\mu}^{NP}(E) = \sum_{j=0}^{n} g_{\mu,j}^{NP} \left(\frac{E - E_{0}}{m_{N}}\right)^{j} e^{-g_{\mu,n+1}^{NP}(E - E_{0})}$$

$$4 \text{ back}$$

-
$$E_0 = 1077 \text{ MeV}$$

- $g_{i,j}^{P}, g_{\mu,j}^{NP}$: fit parameter
- $e^{-g(E-E_0)}$: appropriate
high energy behavior
- $n = 3$

Data base simultaneous fit to $\pi N \rightarrow \pi N, \eta N, K\Lambda, K\Sigma$

World data base on ηN , $K\Lambda$, $K\Sigma$

	PWA	σ_{tot}	$\frac{d\sigma}{d\Omega}$	Р	β
$\pi N ightarrow \pi N$	GWU/SAID 2006				
	up to J=9/2				
$\pi^- p \to \eta n$		62 data points	38 energy points	12 energy points	
			z=1489 to 2235 MeV	1740 to 2235 MeV	
$\pi^- p \to K^0 \Lambda$		66 data points	46 energy points	27 energy points	7 energy points
			1626 to 1405 MeV	1633 to 2208 MeV	1852 to 2262 MeV
$\pi^- p \to K^0 \Sigma^0$		16 data points	29 energy points	19 energy points	
			1694 to 2405 MeV	1694 to 2316 MeV	
$\pi^- p \to K^+ \Sigma^-$		14 data points	15 energy points		
			1739 to 2405 MeV		
$\pi^+ p \to K^+ \Sigma^+$		18 data points	32 energy points	32 energy points	2 energy pionts
			1729 to 2318 MeV	1729 to 2318 MeV	2021 and 2107 MeV

Deborah Rönchen

Deborah Rönchen