Single- & Double-strangeness Hypernuclei in the frame work of the NCSM and χ EFT

Hoai Le, Forschungszentrum Jülich Dr. Klaus Erkelenz Prize Colloquium, HISKP Bonn, 22. Nov. 2022

Special thanks to:

Dr. Gabriele Erkelenz and the prize committee collaborators: Dr. Johann Haidenbauer, Prof. Ulf-G Meißner, Dr. Andreas Nogga

Mitglied der Helmholtz-Gemeinschaft

Outline

- Introduction:
 - Motivations
 - Baryon-Baryon (BB) interactions within chiral EFT theory
- Numerical approach:
 - Jacobi NCSM for nuclear systems with S = -1, -2
 - Similarity Renormalization Group (SRG) in two- & three-body space
- Results:
 - Separation energies and CSB in A=4-8 Λ hypernuclei: ${}^{4}_{\Lambda}$ He, ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li, ${}^{8}_{\Lambda}$ Li
 - ► Double-strangeness systems: ${}^{4}_{\Lambda\Lambda}$ He, ${}^{5}_{\Lambda\Lambda}$ He, ${}^{6}_{\Lambda\Lambda}$ He; ${}^{4}_{\Xi}$ H, ${}^{5}_{\Xi}$ H, ${}^{7}_{\Xi}$ H
- Summary & Outlook

Erkelenz' work and modern BB interactions

6

(J. Haidenbauer, U.-G. Meißner, A. Nogga, EPJA 56 (2019) 91)

How to further constrain YN

• Λ -separation energies are known with high accuracy

Jacobi-NCSM approach

• Idea: represent the A-body translationally invariant hypernuclear Hamiltonian:

$$\mathbf{H} = \mathbf{T}_{rel} + \mathbf{V}^{NN} + \mathbf{V}^{YN} + \mathbf{V}^{NNN} + \mathbf{V}^{YNN} + \Delta M + \cdots$$
$$= \sum_{i < j=1}^{A-1} h_{ij}^{NN} + \sum_{i < j < k=1}^{A-1} \mathbf{V}_{ijk}^{3N} + \sum_{i=1}^{A-1} h_{iY}^{YN} + \sum_{i < j}^{A-1} \mathbf{V}_{ijY}^{YNN} + \cdots$$

in a basis constructed from HO functions

• Jacobi basis: depends on relative Jacobi coordinates of all particles

$$\begin{array}{c} (A-1)N \\ | \bigcirc & \bullet \rangle = | \mathcal{N}JT, \mathcal{N}_{A-1}J_{A-1}T_{A-1}, \\ \Lambda(\Sigma) & \underbrace{\mathcal{N}_{A-1}J_{A-1}T_{A-1}}_{antisym.(A-1)N}, \underbrace{\mathcal{N}_{Y}l_{Y}l_{Y}t_{Y}}_{\Lambda(\Sigma) \ state} (J_{A-1}(l_{Y}s_{Y})I_{Y}) J, (T_{A-1}t_{Y})T \rangle \end{array}$$

- anti-symmetrized (A-1)N states are constructed iteratively:
 - 2N states: $|\alpha_{12}\rangle \equiv |N_{12}(l_{12}S_{12})J_{12}, (t_1t_2)t_{12}\rangle$ antisymmetric
 - ► 3N Jacobi states: $|\alpha_3^{*(1)}\rangle \equiv |N_3 J_3 T_3 \alpha_{12} n_3 (l_3 s_3) I_3, t_3; (J_{12} I_3) J_3, (t_{12} t_3) T_3\rangle$ antisymmetric w.t. r. (1) \leftrightarrow (2)

idea: use antisymmetrizer to project out the (non)antrisymmetric states:

$$\langle \alpha_3^{'*(1)} | \frac{1}{3} (1 - 2\mathcal{P}_{23}) | \alpha_3^{*(1)} \rangle \langle \alpha_3^{*(1)} | \alpha_3 \rangle = \lambda \langle \alpha_3^{*(1)} | \alpha_3 \rangle \qquad \lambda = (0)1$$

8

Jacobi-NCSM approach

$$\Rightarrow \langle \bigcirc \bullet | \sum_{i < j = 1}^{A-1} h_{ij}^{NN} | \bullet \bigcirc \rangle = \langle \bigcirc \bullet | \downarrow \bigcirc \rangle \langle \bigcirc \downarrow | \sum_{i < j = 1}^{A-1} h_{ij}^{NN} | \downarrow \bigcirc \langle \bigcirc \downarrow | \bullet \bigcirc \rangle$$
$$= \delta_Y \delta_{core(A-3)} \begin{pmatrix} A-1 \\ 2 \end{pmatrix} \langle \bigcirc | \downarrow - \circlearrowright \rangle \langle \alpha_{12} | h_{ij}^{NN} | \alpha'_{12} \rangle \langle \bigcirc - \downarrow | \bigcirc \rangle$$

2-body matrix element

• basis truncation: $\mathcal{N} = \mathcal{N}_{A-1} + 2n_{\lambda} + \lambda \leq \mathcal{N}_{max} \Rightarrow E_b = E_b(\omega, \mathcal{N}_{max})$

- extrapolate in ω - and \mathcal{N} -spaces to obtain converged results

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga EPJA (2020)

Convergence of E with respect to ${\mathscr N}$

Similarity Renormalization Group (SRG)

Idea: continuously apply unitary transformation to H to suppress off-diagonal matrix elements

→ observables (binding energies) are conserved due to unitarity of transformation

F.J. Wegner NPB 90 (2000). S.K. Bogner, R.J. Furnstahl, R.J. Perry PRC 75 (2007)

$$\frac{dV(s)}{ds} = \left[\left[T_{rel}, V(s) \right], H(s) \right], \qquad H(s) = T_{rel} + V(s) + \Delta M$$

$$s = 0 \to \infty \qquad \qquad V(s) = V_{12}(s) + V_{13}(s) + V_{23}(s), \quad V_{123,s=0} \equiv V_{NNN}^{bare}; \quad (V_{YNN}^{bare} = 0)$$

• separate SRG flow equations for 2-body and 3-body interactions:

(S.K. Bogner et al PRC75 (2007), K. Hebeler PRC85 (2012))

$$\frac{dV^{NN}(s)}{ds} = [[T^{NN}, V^{NN}], T^{NN} + V^{NN}]$$

$$\frac{dV^{YN}(s)}{ds} = [[T^{YN}, V^{YN}], T^{YN} + V^{YN} + \Delta M]$$

$$\frac{dV_{123}}{ds} = [[T_{12}, V_{12}], V_{31} + V_{23} + V_{123}]$$

$$+ [[T_{31}, V_{31}], V_{12} + V_{23} + V_{123}]$$

$$+ [[T_{23}, V_{23}], V_{12} + V_{31} + V_{123}] + [[T_{rel}, V_{123}], H_s]$$
Eqs.(1)
$$SRG-induced 3BFs are generated even if V_{123}^{bare} = 0$$

• Eqs.(1) are solved by projecting on a 3N (YNN) Jacobi-momentum basis

11

SRG evolution of NN, YN

• $\lambda = (4\mu^2/s)^{1/4}$, $[\lambda] = [p]: \lambda \sim$ width of the band-diagonal structure of V in p-space

(S.K. Bogner et al., PRC 75 (2007))

YN: NLO19(500)

V[MeVfm³]

0

-10

1.0

0.5 [_€ 0.0 0.0 -0.5 NIMe 0.5

-1.0

V[MeVfm³]

10

-10

v[MeVfm³]

10

0

2

-2

-10

V[MeVfm³]

V[MeVfm³]

A=3-5 hypernuclei with SRG-induced YNN

R. Wirth, R. Roth PRL117 (2016), PRC100 (2019)

Forschungszentrum

Impact of YN interactions on $B_{\Lambda}(A \leq 7)$

- NLO13 and NLO19 are almost phase equivalent in the 2-body sector
- NLO13 characterised by a stronger $\Lambda N \Sigma N$ transition potential (especially in ${}^{3}S_{1}$)

 $B_{\Lambda}(NLO19) > B_{\Lambda}(NLO13) \longrightarrow contribution$

15

contribution of chiral YNN force

Impact of YN interactions on $B_{\Lambda}(A \le 8)$

- NLO13 and NLO19 are almost phase equivalent in the 2-body sector
- NLO13 characterised by a stronger $\Lambda N \Sigma N$ transition potential (especially in ${}^{3}S_{1}$)

→ ${}^{4}_{\Lambda}$ H(1⁺), ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li, ${}^{8}_{\Lambda}$ Li are fairly well described by NLO19; NLO13 underestimates these systems HL, J. Haidenbauer, U.-G. Meißner, Andreas Nogga, <u>arXiv:2210.03387</u>

Charge symmetry breaking (CSB) in A=4

Charge symmetry breaking (CSB) in A=4

(J. Haidenbauer, U-G. Meißner and A. Nogga FBS 62(2021))

n

$$\Delta E(1^+) = B_{\Lambda}(^4_{\Lambda}\text{He}, 1^+) - B_{\Lambda}(^4_{\Lambda}\text{H}, 1^+)$$

= -83 ± 94 keV

 $\Delta E(0^+) = B_{\Lambda}(^4_{\Lambda}\text{He}, 0^+) - B_{\Lambda}(^4_{\Lambda}\text{H}, 0^+)$ $= 233 \pm 92 \text{ keV}$

- CSB in singlet (${}^{1}S_{0}$) is much larger than in triplet (${}^{3}S_{1}$)
 - predictions for A=4 are independent of cutoff, same results for NLO13
 - predictions for CSB in A=7,8 multiplets ?

Charge symmetry breaking (CSB) in A=4-8

- NLO13 & NLO19 CSB results for A=7 are comparable to experiment.
- two potentials predict a somewhat larger CSB in A=8 doublet as compared to experiment
- → experimental CSB splitting for A=8 could be larger than 40 ± 60 keV?
 - CSB estimated for A=4 could still be too large or have different spin-dependence?

Fitting LECs to new Star measurement

Recent Star measurement suggests somewhat different CSB in A=4:

 $\Delta E(1^+) = B_{\Lambda}(^4_{\Lambda}\text{He}, 1^+) - B_{\Lambda}(^4_{\Lambda}\text{H}, 1^+)$ $= -83 \pm 94 \text{ keV} \Rightarrow (\text{CSB})$ $= -160 \pm 140 \pm 100 \text{ keV}^* \Rightarrow (\text{CSB}^*)$ $\Delta E(0^+) = B_{\Lambda}(^4_{\Lambda}\text{He}, 0^+) - B_{\Lambda}(^4_{\Lambda}\text{H}, 0^+)$ $= 233 \pm 92 \text{ keV} \Rightarrow (\text{CSB1})$ $= 160 \pm 140 \pm 100 \text{ keV}^* \Rightarrow (\text{CSB}^*)$ * STAR Collaboration PLB 834 (2022)

	NLO19(500)	CSB	CSB*
$a_s^{\Lambda p}$	-2.91	-2.65	-2.58
$a_s^{\Lambda n}$	-2.91	-3.20	-3.29
δa_s	0	0.55	0.71
$\boxed{a_t^{\Lambda p}}$	-1.42	-1.57	-1.52
$a_t^{\Lambda n}$	-1.41	-1.45	-1.49
δa_t	-0.01	-0.12	-0.03

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga arXiv:2210.03387

→ How does the STAR measurement affect the predictions of CSB in A=7,8 multiplets ?

Impact of Star measurement on CSB in A=7,8

CSB* fit predicts reasonable CSB in both A=7 and A=8 systems

S-shell $\Lambda\Lambda$ hypernuclei:

- ${}^{12}C + \Xi^{-} \rightarrow {}^{6}_{\Lambda\Lambda}He + {}^{4}He + t$ ${}^{6}_{\Lambda\Lambda}He \rightarrow {}^{5}_{\Lambda}He + p + \pi^{-}$
- $\Delta B_{\Lambda\Lambda} = B_{\Lambda\Lambda} ({}_{\Lambda\Lambda}^{6} \text{He}) 2B_{\Lambda} ({}_{\Lambda}^{5} \text{He})$ $= 0.67 \pm 0.17 \text{ MeV}$
 - 22 (K. Nakazawa et al., NPA 835 (2010))

 ${}^{5}_{\Lambda\Lambda}$ He/ ${}^{5}_{\Lambda\Lambda}$ H?

- bound in few-body calculations using phenomenological potentials
- predicted $\Delta B_{\Lambda\Lambda}$ is model-dependence
- experimental searching is on going at J-PARC E75

Predictions of chiral YY potentials?

 \mathcal{R} ddelts, for $^{6}_{\Lambda\Lambda}$ He, $^{5}_{\Lambda\Lambda}$ He

23

(HL, J. Haidenbauer, U.-G. Meißner, A. Nogga EPJA 57 7(2021))

- $\Delta B_{\Lambda\Lambda}, B_{\Lambda\Lambda}$ Effect of SRG-induced YYN forces is negligible
 - NLO results are comparable to the Nagara, LO potential overestimates ${}^{6}_{\Lambda\Lambda}$ He $\Delta B_{\Lambda\Lambda}({}^{5}_{\Lambda}$ He) < $\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}$ He) $\Delta B_{\Lambda\Lambda}({}^{5}_{\Lambda\Lambda}$ He) < $\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}$ He) $\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}$ He) $\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}$ He) $\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}$ He) > $\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}$ He) (K. S.
 - (K. S. Myint et al EPJ (2003))

 $\Delta B_{\Lambda\Lambda}({}^{5}_{\Lambda\Lambda}\text{He}) < \Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}\text{He}) \text{ (I. Filikhin, A. Gal NPA 707 (2002))}_{AA}$ $P_{\Xi}(^{6}_{\Lambda\Lambda} \text{He}) < P_{\Xi} \not\in \bigvee_{\Lambda} \text{galculation}$: Suppression of $\Lambda\Lambda \leftrightarrow \Xi N$ in ${}^{6}_{\Lambda\Lambda}$ He $?_{P_{\Xi}}$ P_{Ξ} $B_{\Lambda\Lambda}$

 Λ **Reset**, for $^{6}_{\Lambda\Lambda}$ He, $^{5}_{\Lambda\Lambda}$ He

(HL, J. Haidenbauer, U.-G. Meißner, A. Nogga EPJA 57 7(2021))

- $\Delta B_{\Lambda\Lambda}, B_{\Lambda\Lambda}$ Effect of SRG-induced YYN forces is negligible
 - NLO results are comparable to the Nagara, LO potential overestimates ${}^{6}_{\Lambda\Lambda}$ He Large difference between $\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}$ He) $\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}$ He) (K. S.
 - (K. S. Myint et al EPJ (2003))

 $\Delta B_{\Lambda\Lambda}({}^{5}_{\Lambda\Lambda}\text{He}) < \Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}\text{He}) \text{ (I. Filikhin, A._5Gal NPA 707 (2002))}_{AA}$ $P_{\Xi}(^{6}_{\Lambda\Lambda}\text{He}) < P_{\Xi}(^{5}_{\Lambda\Lambda}\text{eal}\text{culation})$ 24 Suppression of $\Lambda\Lambda \leftrightarrow \Xi N$ in ${}^{6}_{\Lambda\Lambda}$ He $?_{P_{\Xi}}$ P_{Ξ} $B_{\Lambda\Lambda}$

Is ${}^{4}_{\Lambda\Lambda}{\rm H}$ stable against the breakup to ${}^{3}_{\Lambda}{\rm H}$ + Λ ?

- H. Nemura et al., PRL 94 (2005) employ an effective YY potentials
 - → $^{6}_{\Lambda\Lambda}$ He, $^{5}_{\Lambda\Lambda}$ H/He are strongly bound, $B_{\Lambda\Lambda}(^{4}_{\Lambda\Lambda}$ H) $\approx 2 \text{ keV}$
- L. Contessi et al., PLB 797 (2019) use pointless EFT interactions at LO

 \rightarrow the existence of ${}^{4}_{\Lambda\Lambda}$ H is incompatible with the Nagara result for ${}^{6}_{\Lambda\Lambda}$ He

• Chiral YY interactions at LO & NLO: (HL, J. Haidenbauer, U.-G. Meißner, A. Nogga, EPJA 57 7(2021))

→ NLO leads to a particle unstable ${}^{4}_{\Lambda\Lambda}$ H. Existence of $A = 4 \Lambda\Lambda$ hypernucleus is very unlikely

lighter systems?

using ΞN NLO potential we predict the existence of A=4-7 Ξ hypernuclei:

Results for $A = 4 - 7 \Xi$ **-hypernuclei**

Forschun

- Coulomb interaction contributes ~ 200, 600 and 400 keV to $NN\Xi$, ${}_{\Xi}^{5}H$, ${}_{\Xi}^{7}H$
- $\frac{7}{\Xi}$ **H** is expected to be produced and studied in 7 Li(K^{-} , K^{+}) at J-PARC (H. Fujioka et al., FBS 69(2021)

Summary & outlook

At our disposal we have 2 tools to tackle light (hyper)nuclear systems:

- s-shell (hyper)nuclei: Faddeev-Yakubovsky method (Andreas Nogga)
- s-shell & light p-shell: Jacobi No-core Shell Model approach
- establish direct link between underlying YN (YY) interactions and observables (A<9)</p>

YN at NLO yields reasonable predictions for A = 3 - 8 hypernuclei:

- include chiral YNN forces in order to properly describe light hypernuclei
- use neural network to perform extrapolation to infinite model space for A=7,8 systems

Chiral YY (ΞN) potentials predict the existence of ${}^{5}_{\Lambda\Lambda}$ He/ ${}^{5}_{\Lambda\Lambda}$ H, $NN\Sigma$, ${}^{5}_{\Xi}$ H and ${}^{7}_{\Xi}$ H:

• include SRG-induce Ξ NN forces to obtain more quantitive estimates

Thank you!

