Single- \& Double-strangeness Hypernuclei in the frame

 work of the NCSM and χ EFTHoai Le, Forschungszentrum Jülich
Dr. Klaus Erkelenz Prize Colloquium, HISKP Bonn, 22. Nov. 2022

Special thanks to:
Dr. Gabriele Erkelenz and the prize committee collaborators: Dr. Johann Haidenbauer, Prof. Ulf-G Meißner, Dr. Andreas Nogga

Outline

- Introduction:
- Motivations
- Baryon-Baryon (BB) interactions within chiral EFT theory
- Numerical approach:
- Jacobi NCSM for nuclear systems with $S=-1,-2$
- Similarity Renormalization Group (SRG) in two- \& three-body space
- Results:
- Separation energies and CSB in A=4-8 Λ hypernuclei: ${ }_{\Lambda}^{\mathbf{4}} \mathbf{H e},{ }_{\Lambda}^{5} \mathbf{H e},{ }_{\Lambda}^{7} \mathbf{L i},{ }_{\Lambda}^{\mathbf{8}} \mathbf{L i}$
- Double-strangeness systems: ${ }_{\Lambda \Lambda}^{4} \mathbf{H e},{ }_{\Lambda \Lambda}^{5} \mathbf{H e},{ }_{\Lambda \Lambda}^{6} \mathbf{H e} ;{ }_{\Xi}^{4} \mathbf{H},{ }_{\Xi}^{5} \mathbf{H},{ }_{\Xi}^{7} \mathbf{H}$
- Summary \& Outlook

Why is hypernuclear physics interesting?

- probe of nuclear interior
- unique laboratory to explore the MB aspect of 3-flavour BB interaction

$3-$ contribute to NS at $\rho=2-3 \rho_{0}$
B. K. Pradhan et al. PRC 103(2021)

Erkelenz' work and modern BB interactions

- OBE model: NN Bonn-potential
K. Erkelenz, Phys. Rept. 3 (1974) 191

OBE model for YN interaction
(R. Bottgen, K. Holinde, T. A. Rijken,...)

- Semi-phenomenological (meson-exchange) potentials:
(CD-Bonn, Argonne V18, Nijmegen, $\chi^{2} /$ datum $\left.\sim 1\right) \quad$ (Nijmegen, Quark model, Bonn-Jülich)
- Chiral EFT approach:
(Weinberg, Ordonez, Ray and Van Kolck, Munich, (Bonn-Jülich, Jülich-Bonn-Munich)
Bonn-Jülich-Bochum, Idaho, Bochum, ...)

BB interactions in $\chi \mathrm{EFT}$

- LECs are determined via a fit to experiment:
- $\mathbf{~ 5 0 0 0 ~} \mathrm{NN}+\mathrm{Nd}$ scattering data $+{ }^{2} \mathrm{H},{ }^{3} \mathrm{H} /{ }^{3} \mathrm{He} \longrightarrow \quad \mathrm{NN}$ forces up to $\mathrm{N}^{4} \mathrm{LO}+, 3 \mathrm{NF}$ up to $\mathrm{N}^{2} \mathrm{LO}$ (P. Reinert et al EPJA (2018), P. Maris et al PRC 103(2021))
- ~ 36 YN scattering data $+{ }_{\mathbf{~}}^{\mathbf{3}} \mathbf{H} \longrightarrow$ YN forces up to NLO (NLO13, NLO19) and $\mathrm{N}^{2} \mathrm{LO}$

YN interactions at NLO

NLO13: J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24
NLO19: J. Haidenbauer, U.-G. Meißner, A. Nogga, EPJ A 56 (2019) 91

- two realisation at NLO: NLO13 and NLO19
- almost phase equivalent
- NLO13 leads to a larger transition potential $\boldsymbol{V}_{\mathbf{\Lambda N - \Sigma N}}$

\longrightarrow NLO13 and NLO19 as a tool to estimate effect of 3BF in many-body systems

How to further constrain YN interactions?

- $\boldsymbol{\Lambda}$-separation energies are known with high accuracy

Jacobi-NCSM approach

- Idea: represent the A-body translationally invariant hypernuclear Hamiltonian:

$$
\begin{aligned}
& \mathrm{H}=\mathrm{T}_{r e l}+\mathrm{V}^{\mathrm{NN}}+\mathrm{V}^{\mathrm{YN}}+\mathrm{V}^{\mathrm{NNN}}+\mathrm{V}^{\mathrm{YNN}}+\Delta M+\cdots \\
&=\sum_{i<j=1}^{A-1} h_{i j}^{N N}+\sum_{i<j<k=1}^{A-1} \mathrm{~V}_{i j k}^{3 N}+\sum_{i=1}^{A-1} h_{i Y}^{Y N}+\sum_{i<j}^{A-1} \mathrm{~V}_{i j Y}^{Y N N}+\cdots \\
& \uparrow \mathrm{N} \leftrightarrow \Sigma \mathrm{~N}
\end{aligned}
$$

in a basis constructed from HO functions

- Jacobi basis: depends on relative Jacobi coordinates of all particles

$$
\stackrel{(\mathrm{A}-1) \mathrm{N}}{\stackrel{\mathrm{O}}{\bullet}}\rangle=|\mathscr{N} J T, \underbrace{\mathcal{N}_{A-1} J_{A-1} T_{A-1}}_{\text {antisym.(A-1)N}}, \underbrace{n_{Y} l_{Y} I_{Y} t_{Y}}_{\Lambda(\Sigma) \text { state }} ;\left(J_{A-1}\left(l_{Y} s_{Y}\right) I_{Y}\right) J,\left(T_{A-1} t_{Y}\right) T\rangle
$$

- anti-symmetrized (A-1)N states are constructed iteratively:
- 2N states: $\left|\alpha_{12}\right\rangle \equiv\left|N_{12}\left(l_{12} S_{12}\right) J_{12},\left(t_{1} t_{2}\right) t_{12}\right\rangle \quad$ antisymmetric $\quad(-\mathbf{1})^{l_{12}+s_{12}+t_{12}}=-\mathbf{1}$

- 3N Jacobi states: $\left|\alpha_{3}^{*(1)}\right\rangle \equiv\left|N_{3} J_{3} T_{3} \alpha_{12} n_{3}\left(l_{3} s_{3}\right) I_{3}, t_{3} ;\left(J_{12} I_{3}\right) J_{3},\left(t_{12} t_{3}\right) T_{3}\right\rangle \quad$ antisymmetric w.t. r. (1) $\leftrightarrow(2)$
\rightarrow idea: use antisymmetrizer to project out the (non)antrisymmetric states:

$$
\left\langle\alpha_{3}^{*(1)}\right| \frac{1}{3}\left(1-2 \mathscr{P}_{23}\right)\left|\alpha_{3}^{*(1)}\right\rangle\left\langle\alpha_{3}^{*(1)} \mid \alpha_{3}\right\rangle=\lambda\left\langle\alpha_{3}^{*(1)} \mid \alpha_{3}\right\rangle \quad \lambda=(0) 1
$$

Jacobi-NCSM approach

- intermediate bases for evaluating Hamiltonian:

$$
\begin{aligned}
& =\delta_{Y} \delta_{\text {core }(A-3)}\binom{A-1}{2}\langle\mathbf{O} \mid-\mathbf{O}\rangle\left\langle\alpha_{12}\right| h_{i j}^{N N}\left|\alpha_{12}^{\prime}\right\rangle\langle\mathbf{O} \mid \mathbf{O}\rangle \\
& \text { 2-body matrix element }
\end{aligned}
$$

- basis truncation: $\mathcal{N}=\mathcal{N}_{A-1}+2 n_{\lambda}+\lambda \leq \mathcal{N}_{\text {max }} \Rightarrow E_{b}=E_{b}\left(\omega, \mathcal{N}_{\text {max }}\right)$
\longrightarrow extrapolate in ω - and \mathcal{N}-spaces to obtain converged results

Convergence of E with respect to \mathcal{N}

- BB interactions contain short-range and tensor correlations that couple low- and high-momentum states \rightarrow NCSM calculations converge slowly

Similarity Renormalization Group (SRG)

Idea: continuously apply unitary transformation to H to suppress off-diagonal matrix elements
\rightarrow observables (binding energies) are conserved due to unitarity of transformation
F.J. Wegner NPB 90 (2000). S.K. Bogner, R.J. Furnstahl, R.J. Perry PRC 75 (2007)

$$
\begin{array}{ll}
\frac{d V(s)}{d s}=\left[\left[T_{\text {rel }}, V(s)\right], H(s)\right], & H(s)=T_{\text {rel }}+V(s)+\Delta M \\
s=0 \rightarrow \infty & V(s)=V_{12}(s)+V_{13}(s)+V_{23}(s)+V_{123}(s), \quad V_{123, s=0} \equiv V_{N N N}^{\text {bare }} ; \quad\left(V_{Y N N}^{\text {bare }}=0\right)
\end{array}
$$

- separate SRG flow equations for 2-body and 3-body interactions:
(S.K. Bogner et al PRC75 (2007),

$$
\begin{array}{ll}
\begin{array}{ll}
\frac{d V^{N N}(s)}{d s} & =\left[\left[T^{N N}, V^{N N}\right], T^{N N}+V^{N N}\right] \\
\frac{d V^{Y N}(s)}{d s} & =\left[\left[T^{Y N}, V^{Y N}\right], T^{Y N}+V^{Y N}+\Delta M\right] \\
\frac{d V_{123}}{d s} & =\left[\left[T_{12}, V_{12}\right], V_{31}+V_{23}+V_{123}\right] \\
& +\left[\left[T_{31}, V_{31}\right], V_{12}+V_{23}+V_{123}\right] \\
& +\left[\left[T_{23}, V_{23}\right], V_{12}+V_{31}+V_{123}\right]+\left[\left[T_{\text {rel }}, V_{123}\right], H_{s}\right]
\end{array} & \begin{aligned}
\text { K. Hebeler PRC85 (2012)) } \\
\text { Eqs.(1) } \\
\text { SRG-induced 3BFs are } \\
\text { generated even if } V_{123}^{\text {bare }}=0
\end{aligned}
\end{array}
$$

- Eqs.(1) are solved by projecting on a $3 N$ (YNN) Jacobi-momentum basis

SRG evolution of NN, YN

- $\lambda=\left(4 \mu^{2} / s\right)^{1 / 4}, \quad[\lambda]=[p]: \lambda \sim$ width of the band-diagonal structure of V in p-space
(S.K. Bogner et al., PRC 75 (2007))

$\mathrm{NN}: \mathrm{N}^{4} \mathrm{LO}+(450)$

SRG evolution of 3N, YNN: $V\left(p q \alpha, p^{\prime} q^{\prime} \alpha^{\prime}\right)$

- hyperradius $\xi^{2}=p^{2}+\frac{3}{4} q^{2} ; \quad \tan \theta=2 p / \sqrt{3} q(\theta=\pi / 12) ; \quad \alpha=\alpha^{\prime}=1 \Rightarrow \quad V_{123}=V_{123}\left(\xi^{\prime}, \xi\right) \quad$ (K. Hebeler PRC85 (2012))

$$
\begin{aligned}
& 2 \mathrm{~N}+3 \mathrm{~N}: \chi \mathrm{N}^{2} \mathrm{LO}(550) \\
& \text { (evolve in } 3 \mathbf{N} \text { space) }
\end{aligned}
$$

SRG-induced $V_{\Lambda N N-\Lambda N N}$

A=3-5 hypernuclei with SRG-induced YNN

NN:SMS N ${ }^{4} \mathbf{L O + (4 5 0)}$
3N: $\mathrm{N}^{2} \mathrm{LO}(450)$
\rightarrow contributions of SRG-induced YNNN forces to $B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H},{ }_{\Lambda}^{5} \mathrm{He}\right)$ are negligible

Impact of YN interactions on $B_{\Lambda}(A \leq 7)$

- NLO13 and NLO19 are almost phase equivalent in the 2-body sector
- NLO13 characterised by a stronger $\boldsymbol{\Lambda} \boldsymbol{N}-\boldsymbol{\Sigma} \boldsymbol{N}$ transition potential (especially in ${ }^{3} S_{1}$) \rightarrow manifest in higher-body observables (J.Haidenbauer et al., NPA 915 (2019))

NN: SMS N ${ }^{4} \mathrm{LO}+(450)$
YN: NLO
\simeq NLO13-500
*
\rightarrow NLO13-600

- NLO13-650
- N- NLO19-500
-*- NLO19-55
-*- NLO19-600
-- NLO19-650
HL, J. Haidenbauer, U.-G. Meißner, A. Nogga EPJA 56 12(2020)
- $B_{\Lambda}(\mathrm{NLO} 19)>B_{\Lambda}(\mathrm{NLO} 13) \rightarrow$ contribution of chiral YNN force

Impact of YN interactions on $B_{\Lambda}(A \leq 8)$

- NLO13 and NLO19 are almost phase equivalent in the 2-body sector
- NLO13 characterised by a stronger $\boldsymbol{\Lambda} \boldsymbol{N}-\boldsymbol{\Sigma} \boldsymbol{N}$ transition potential (especially in ${ }^{3} S_{1}$) \longrightarrow manifest in higher-body observables (J.Haidenbauer et al., NPA 915 (2019))

NN:SMS ${ }^{4}$ LO+(450)
$+3 \mathrm{~N}: \mathrm{N}^{2} \mathrm{LO}(450)$
+SRG-induced YNN

Experiment:
M. Agnello et al. PLB 681(2009)
M. Juric NPB 52(1973)
$\rightarrow{ }_{\Lambda}^{4} \mathrm{H}\left(1^{+}\right),{ }_{\Lambda}^{5} \mathrm{He},{ }_{\Lambda}^{7} \mathrm{Li},{ }_{\Lambda}^{8} \mathrm{Li}$ are fairly well described by NLO19; NLO13 underestimates these systems

Charge symmetry breaking (CSB) in $A=4$

- Schulz et al.(2016); Yamamoto et al. (2015); Juric et al. (1973); Bedjidian et al $(1976,1979)$

$$
\begin{aligned}
& \Delta E\left(1^{+}\right)=B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 1^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 1^{+}\right) \\
&=-83 \pm 94 \mathrm{keV} \\
& \Delta E\left(0^{+}\right)=B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 0^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 0^{+}\right) \\
&=233 \pm 92 \mathrm{keV} \\
& \bullet{ }_{\Lambda}^{4} \mathrm{He}-{ }_{\Lambda}^{4} \mathrm{H} \text { Coulomb corrections } \sim-50 \mathrm{keV} \\
& \text { (A. R. Bodmer et al. PRC } 31(\mathbf{1 9 8 5)})
\end{aligned}
$$

Charge symmetry breaking (CSB) in $A=4$

(J. Haidenbauer, U-G. Meißner and A. Nogga FBS 62(2021))

- additional 2LECs (at LO) contributing to CSB are adjusted to $\Delta E\left(0^{+}, 1^{+}\right)$

$(\mathrm{fm} / / \mathrm{keV})$	$a_{s}^{\Lambda p}$	$a_{s}^{\Lambda n}$	δa_{s}	$a_{t}^{\Lambda p}$	$a_{t}^{\Lambda n}$	δa_{t}	$\Delta E\left(0^{+}\right)$	$\Delta E\left(1^{+}\right)$
NLO19(500) no CSB	$\mathbf{- 2 . 9 1}$	$\mathbf{- 2 . 9 1}$	$\mathbf{0}$	$\mathbf{- 1 . 4 2}$	$\mathbf{- 1 . 4 1}$	$\mathbf{- 0 . 0 1}$	$\mathbf{3 4}$	$\mathbf{1 0}$
CSB1(500)	$\mathbf{- 2 . 6 5}$	$\mathbf{- 3 . 2 0}$	$\mathbf{0 . 5 5}$	$\mathbf{- 1 . 5 8}$	$\mathbf{- 1 . 4 7}$	$\mathbf{- 0 . 1 1}$	$\mathbf{2 4 9}$	$\mathbf{- 7 5}$
CSB1(550)	-2.64	$\mathbf{- 3 . 2 1}$	0.57	$\mathbf{- 1 . 5 2}$	$\mathbf{- 1 . 4 1}$	-0.11	252	-72
CSB1(600)	-2.63	-3.23	0.6	$\mathbf{- 1 . 4 7}$	-1.36	-0.09	243	-67
CSB1(650)	-2.62	-3.23	0.61	-1.46	-1.37	-0.09	250	-69

$$
\begin{aligned}
\Delta E\left(1^{+}\right) & =B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 1^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 1^{+}\right) \\
& =-83 \pm 94 \mathrm{keV}
\end{aligned}
$$

$$
\begin{aligned}
\Delta E\left(0^{+}\right) & =B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 0^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 0^{+}\right) \\
& =233 \pm 92 \mathrm{keV}
\end{aligned}
$$

$\rightarrow \quad$ CSB in singlet $\left({ }^{1} S_{0}\right)$ is much larger than in triplet $\left({ }^{3} S_{1}\right)$

- predictions for $\mathrm{A}=4$ are independent of cutoff, same results for NLO13
- predictions for CSB in A=7,8 multiplets ?

Charge symmetry breaking (CSB) in $A=4-8$

$\mathrm{NN}: \mathrm{SMS} \mathrm{N}^{4} \mathrm{LO}+(450)$
$+3 \mathrm{~N}: \mathrm{N}^{2} \mathrm{LO}(450)$
+SRG-induced YNN

HL, J. Haidenbauer,
U.-G. Meißner, A. Nogga, arXiv:2210.03387

- NLO13 \& NLO19 CSB results for A=7 are comparable to experiment.
- two potentials predict a somewhat larger CSB in A=8 doublet as compared to experiment
\rightarrow experimental CSB splitting for $A=8$ could be larger than $40 \pm 60 \mathrm{keV}$?
- CSB estimated for $A=4$ could still be too large or have different spin-dependence?

Fitting LECs to new Star measurement

Recent Star measurement suggests somewhat different CSB in $A=4$:

$$
\begin{aligned}
\Delta E\left(1^{+}\right) & =B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 1^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 1^{+}\right) \\
& =-83 \pm 94 \mathrm{keV} \Rightarrow(\mathrm{CSB}) \\
& =\mathbf{- 1 6 0} \pm \mathbf{1 4 0} \pm \mathbf{1 0 0} \mathrm{keV}^{*} \Rightarrow\left(\mathrm{CSB}^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Delta E\left(0^{+}\right) & =B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{He}, 0^{+}\right)-B_{\Lambda}\left({ }_{\Lambda}^{4} \mathrm{H}, 0^{+}\right) \\
& =233 \pm 92 \mathrm{keV} \Rightarrow(\mathrm{CSB} 1) \\
& =\mathbf{1 6 0} \pm \mathbf{1 4 0} \pm \mathbf{1 0 0} \mathrm{keV}^{*} \Rightarrow\left(\mathrm{CSB}^{*}\right)
\end{aligned}
$$

* STAR Collaboration PLB 834 (2022)

	NLO19(500)	CSB	CSB *
$a_{\boldsymbol{s}}^{\Lambda p}$	-2.91	-2.65	-2.58
$a_{\boldsymbol{s}}^{\Lambda n}$	-2.91	-3.20	-3.29
$\boldsymbol{\delta} \boldsymbol{a}_{\boldsymbol{s}}$	$\mathbf{0}$	$\mathbf{0 . 5 5}$	$\mathbf{0 . 7 1}$
$a_{t}^{\Lambda p}$	-1.42	-1.57	-1.52
$a_{t}^{\Lambda n}$	-1.41	-1.45	-1.49
$\boldsymbol{\delta} \boldsymbol{a}_{\boldsymbol{t}}$	$\mathbf{- 0 . 0 1}$	$\mathbf{- 0 . 1 2}$	$\mathbf{- 0 . 0 3}$

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga arXiv:2210.03387
\rightarrow How does the STAR measurement affect the predictions of CSB in A=7,8 multiplets ?

JÜLICH
Forschungszentrum

Impact of Star measurement on CSB in $A=7,8$

NN:SMS $\mathrm{N}^{4} \mathrm{LO}+(450)$
$\lambda_{N N}=1.6 \mathrm{fm}^{-1}$
$\lambda_{Y N}=0.823 \mathrm{fm}^{-1}$
HL, J. Haidenbauer,
U.-G. Meißner, A. Nogga, arXiv:2210.03387

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga, arXiv:2210.03387
\rightarrow CSB* fit predicts reasonable CSB in both $A=7$ and $A=8$ systems

NAGARA Event ${ }_{1}^{6} \mathrm{He}$

$$
\begin{array}{r}
{ }^{12} \mathrm{C}+\Xi^{-} \rightarrow{ }_{\Lambda \Lambda}^{6} \mathrm{He}+{ }^{4} \mathrm{He}+t \\
{ }_{\Lambda \Lambda}^{6} \mathrm{He} \rightarrow{ }_{\Lambda}^{5} \mathrm{He}+p+\pi^{-}
\end{array}
$$

$$
\longrightarrow \Delta \boldsymbol{B}_{\Lambda \Lambda}=\boldsymbol{B}_{\Lambda \Lambda}\left({ }_{\Lambda \Lambda}^{6} \mathrm{He}\right)-\boldsymbol{2} \boldsymbol{B}_{\Lambda}\left({ }_{\Lambda}^{5} \mathrm{He}\right)
$$

$$
=0.67 \pm 0.17 \mathrm{MeV}
$$

(K. Nakazawa et al., NPA 835 (2010))

$$
{ }_{\Lambda \Lambda}^{5} \mathbf{H e} /_{\Lambda \Lambda}^{5} \mathbf{H} ?
$$

- bound in few-body calculations using phenomenological potentials
- predicted $\Delta B_{\Lambda \Lambda}$ is model-dependence
- experimental searching is on going at J-PARC E75

- only loosely bound $\left(\boldsymbol{B}_{\Lambda \Lambda} \approx 2 \mathrm{keV}\right)$ in H. Nemura calculation (H.Nemura et al., PRL 94 (2005))

Predictions of chiral YY potentials?

Results for ${ }_{\Lambda}^{6} \mathrm{He},{ }_{\Lambda}^{5} \mathrm{He}$

\longrightarrow • Effect of SRG-induced YYN forces is negligible

- NLO results are comparable to the Nagara, LO potential overestimates ${ }_{\Lambda \Lambda}^{6} \mathrm{He}$
- Large difference between $\Delta B_{\Lambda \Lambda}: \quad \Delta B_{\Lambda \Lambda}\left({ }_{\Lambda \Lambda}^{5} \mathrm{He}\right)>\Delta B_{\Lambda \Lambda}\left({ }_{\Lambda \Lambda}^{6} \mathrm{He}\right) \quad$ (K. S. Myint et al EPJ (2003))

FY calculation: $\quad \Delta B_{\Lambda \Lambda}\left({ }_{\Lambda \Lambda}^{5} \mathrm{He}\right)<\Delta B_{\Lambda \Lambda}\left({ }_{\Lambda \Lambda}^{6} \mathrm{He}\right)$ (I. Filikhin, A. Gal NPA 707 (2002))

Results for ${ }_{\Lambda}^{6} \mathrm{He},{ }_{\Lambda}^{5} \mathrm{He}$

\longrightarrow • Effect of SRG-induced YYN forces is negligible

- NLO results are comparable to the Nagara, LO potential overestimates ${ }_{\Lambda \Lambda}^{6} \mathrm{He}$
- Large difference between $\Delta B_{\Lambda \Lambda}: \quad \Delta B_{\Lambda \Lambda}\left({ }_{\Lambda \Lambda}^{5} \mathrm{He}\right)>\Delta B_{\Lambda \Lambda}\left({ }_{\Lambda \Lambda}^{6} \mathrm{He}\right) \quad$ (K. S. Myint et al EPJ (2003))

FY calculation: $\quad \Delta B_{\Lambda \Lambda}\left({ }_{\Lambda \Lambda}^{5} \mathrm{He}\right)<\Delta B_{\Lambda \Lambda}\left({ }_{\Lambda \Lambda}^{6} \mathrm{He}\right)$ (I. Filikhin, A. Gal NPA 707 (2002))

Is ${ }_{\Lambda \Lambda}^{4} \mathrm{H}$ stable against the breakup to ${ }_{\Lambda}^{3} \mathrm{H}+\Lambda$?

- H. Nemura et al., PRL 94 (2005) employ an effective YY potentials
$\rightarrow{ }_{\Lambda \Lambda}^{6} \mathrm{He},{ }_{\Lambda}^{5} \mathrm{H} / \mathrm{He}$ are strongly bound, $B_{\Lambda \Lambda}\left({ }_{\Lambda \Lambda}^{4} \mathrm{H}\right) \approx 2 \mathrm{keV}$
- L. Contessi et al., PLB 797 (2019) use pointless EFT interactions at LO
\rightarrow the existence of ${ }_{\Lambda \Lambda}^{4} \mathrm{H}$ is incompatible with the Nagara result for ${ }_{\Lambda}^{6} \mathrm{He}$
- Chiral YY interactions at LO \& NLO: (HL, J. Haidenbauer, U.-G. Meißner, A. Nogga, EPJA 57 7(2021))

${ }_{25} \rightarrow$ NLO leads to a particle unstable ${ }_{\Lambda \Lambda}^{4} \mathrm{H}$. Existence of $A=4 \Lambda \Lambda$ hypernucleus is very unlikely
${ }_{\Xi}^{15} \mathrm{C}$
${ }_{\Xi^{-}}^{\mathbf{1 2}} \mathbf{B e}$?
T. Fukuda et al. PRC 58 (1998)
T. Nagar et al. Pos (INPC2016); AIP Conf. proc 2019
$\Rightarrow \quad U_{\Xi}(k=0) \approx-14 \mathrm{MeV}$
$U_{\Xi}(k=0, \chi$ EFT $) \approx-9 \mathrm{MeV}$
M. Kohno, PRC 024313 (2019)

lighter systems?

[1] K. Nakazała et al. PTEP 033D02 (2015)
[2] S. Hayakawa et al. PTL 062501 (2021)
[3] M. Yoshimoto PTEP 073D02 (2021)
(adapted from Y. Tanimura HYP2022 (2022))
using ΞN NLO potential we predict the existence of $\mathrm{A}=4-7 \Xi$ hypernuclei:
${ }_{\Xi}^{7}$ - H ?
${ }^{6} \mathrm{He}$

Results for $A=4-7$-hypernuclei

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga, EPJA 57 12(2021)

- Coulomb interaction contributes ~ 200, 600 and 400 keV to $N N N \Xi,{ }_{\Xi}^{5} \mathrm{H},{ }_{\Xi}^{7} \mathrm{H}$

Summary \& outlook

At our disposal we have $\mathbf{2}$ tools to tackle light (hyper)nuclear systems:

- s-shell (hyper)nuclei: Faddeev-Yakubovsky method (Andreas Nogga)
- s-shell \& light p-shell: Jacobi No-core Shell Model approach
\rightarrow establish direct link between underlying YN (YY) interactions and observables ($\mathrm{A}<9$)

YN at NLO yields reasonable predictions for $A=3-8$ hypernuclei:

- include chiral YNN forces in order to properly describe light hypernuclei
- use neural network to perform extrapolation to infinite model space for $A=7,8$ systems

Chiral YY (ΞN) potentials predict the existence of ${ }_{\Lambda \Lambda}^{5} \mathbf{H e} /{ }_{\Lambda \Lambda}^{5} \mathbf{H}, N N N \Xi,{ }_{\Xi}^{5} \mathrm{H}$ and ${ }_{\Xi}^{7} \mathrm{H}$:

- include SRG-induce $\Xi N N$ forces to obtain more quantitive estimates

Thank you!

- production of ${ }_{\Xi}^{5} \mathrm{H}$?

$$
\begin{aligned}
& \bar{p} p \rightarrow \bigsqcup^{\Xi^{-}}{ }^{\Xi^{+}} \quad \text { PANDA (J.I. Pütz PhD } \\
& \rightarrow{ }^{4} \mathrm{Be} \rightarrow{ }_{\Xi}^{5} \mathrm{H} \\
& \Xi^{*}(1530), \text { then } \quad \Xi^{*}(1530) \rightarrow{ }^{\Xi^{-}+\pi^{+}}
\end{aligned}{ }^{4} \mathrm{He} \rightarrow{ }_{\Xi}^{5} \mathrm{H}
$$

