The Nucleon Axial Coupling from QCD

PRD 96 054513 1701.07559 1704.01114 Nature 558 91-94 (2018) 1805.12130

Evan Berkowitz

Institut für Kernphysik Institute for Advanced Simulation Forschungszentrum Jülich

JÜLICH

Forschungszentrum 20 November 2018 Dr. Klaus Erkelenz Kolloquium

FZJ EB

Bálint Joó JLab

Liverpool UNIVERSITY OF LIVERPOOL Plymouth

Jefferson Lab

LLNL Pavlos Vranas, David Brantley NERSC **Thorsten Kurth** Amy Nicholson, UNC Henry Monge Camacho

Nicolas Garron

- nVidia Kate Clark
- Chris Bouchard Glasgow
 - INT Chris Monahan
- William & Mary

Kostas Orginos

Software	References
METAQ	Berkowitz arXiv:1702.06122 <u>github.com/evanberkowitz/metaq</u> Berkowitz et al. EPJ (LATTICE2017) 175 09007 (2018)
chroma QDP++	Edwards and Joo (SciDAC, LHPC and UKQCD Collaborations) Nucl. Phys. Proc. Suppl 140, 832 (2005)
QUDA	Clark et al. Comput. Phys. Commun. 181 1517 (2010) Babich et al. Supercomputing 11, 70
hdf5 in QDP++	Kurth et al PoS LATTICE2014 045 (2015)
qmp	Chen, Edwards, and Watson et al. https://github.com/usqcd-software/qmp
	Berkowitz et al. FPJ (LATTICE2017) 175 09007 (2018)

mpi_jm McElvain et al. <u>https://github.com/kenmcelvain/mpi_jm/</u>

Introduction

$$\left\langle N(p) \mid A^a_\mu \mid N(p) \right\rangle = \left\langle N(p) \mid \bar{\psi} \gamma_\mu \gamma_5 \tau^a \psi \mid N(p) \right\rangle$$
$$= g_A \ \bar{n}(p) \gamma_\mu \gamma_5 \tau^a n(p)$$

- Free neutron lifetime
- Nuclear β decay
- Nuclear force

t

Essential in modern nuclear interactions and chiral EFT forces

Epelbaum, Hammer, Meißner Rev. Mod. Phys 81 (2009) 1773-1825

Appears in all meson

exchange models

K. Erkelenz, K. Holinde, K. Bleuler Nucl. Phys. A139 (1969) 308-328 Nucl. Phys. A161 (1971) 155-176 Nucl. Phys. A194 (1972) 161-176
K. Holinde, K. Erkelenz, R. Alzetta Nucl. Phys. A198 (1972) 598-608
K. Bleuler, K. Erkelenz, K. Holinde, R. Machleidt Nucl. Phys. A205 (1973) 292-298
R. Machleidt, K. Erkelenz, K. Holinde Nucl. Phys. A232 (1974) 398-416 PLB 49 (1974) 209-212
K. Erkelenz, Phys. Rept. 13 (1974) 191
Notably, the pioneering Bonn Potential

PDG 2016

t

PDG 2016

t

*Nico result (2005) was superseded by an updated and improved result, Yue (2013); †Preliminary results

Lucy Reading-Ikkanda/Quanta Magazine - Neutron Lifetime Puzzle Deepens, but No Dark Matter Seen

Simple Problems Remain Outstanding

BOTTLE and BEAM

methods of measuring the neutron lifetime disagree at the 99% level

$$\tau_n = \frac{(5172.0 \pm 1.1)\text{seconds}}{1 + 3g_A^2}$$

Can we calculate g_A?

Bottle and Beam: Daniel Savage for Quanta Magazine

Applications

Big Bang Nucleosynthesis Astrophysics

New Physics Searches

LQCD Systematics

continuum limit

physical quark masses

infinite volume limit

A long-outstanding problem for LQCD

S. Collins, LATTICE2016 plenary

MILC Ensembles

MILC Collaboration Phys. Rev. D87 (2013) 054505

+ additional HISQ ensembles generated at LLNL

	HISQ gauge configuration parameters					valence parameters									
	abbr.	$N_{ m cfg}$	volume	$\sim a$ [fm]	m_l/m_s	$\sim m_{\pi_5}$ [MeV]	$\sim m_{\pi_5} L$	$N_{ m src}$	L_5/a	aM_5	b_5	c_5	$am_l^{ m val.}$	$\sigma_{ m smr}$	$N_{ m smr}$
coarser	a15m400	1000	$16^3 \times 48$	0.15	0.334	400	4.8	8	12	1.3	1.5	0.5	0.0278	3.0	30
	a15m350	1000	$16^3 \times 48$	0.15	0.255	350	4.2	16	12	1.3	1.5	0.5	0.0206	3.0	30
	a15m310	1960	$16^3 \times 48$	0.15	0.2	310	3.8	24	12	1.3	1.5	0.5	0.01580	4.2	60
	a15m220	1000	$24^3 \times 48$	0.15	0.1	220	4.0	12	16	1.3	1.75	0.75	0.00712	4.5	60
	a15m130	1000	$32^3 \times 48$	0.15	0.036	130	3.2	5	24	1.3	2.25	1.25	0.00216	4.5	60
ddle	a12m400	1000	$24^3 \times 64$	0.12	0.334	400	5.8	8	8	1.2	1.25	0.25	0.02190	3.0	30
	a12m350	1000	$24^3 \times 64$	0.12	0.255	350	5.1	8	8	1.2	1.25	0.25	0.01660	3.0	30
	a12m310	1053	$24^3 \times 64$	0.12	0.2	310	4.5	8	8	1.2	1.25	0.25	0.01260	3.0	30
	a12m220S	1000	$24^3 \times 64$	0.12	0.1	220	3.2	4	12	1.2	1.5	0.5	0.00600	6.0	90
Ĭ	a12m220	1000	$32^3 \times 64$	0.12	0.1	220	4.3	4	12	1.2	1.5	0.5	0.00600	6.0	90
	a12m220L	1000	$40^3 \times 64$	0.12	0.1	220	5.4	4	12	1.2	1.5	0.5	0.00600	6.0	90
	a12m130	1000	$48^3 \times 64$	0.12	0.036	130	3.9	3	20	1.2	2.0	1.0	0.00195	7.0	150
,	a09m400	1201	$32^3 \times 64$	0.09	0.335	400	5.8	8	6	1.1	1.25	0.25	0.0160	3.5	45
ine.	a09m350	1201	$32^3 \times 64$	0.09	0.255	350	5.1	8	6	1.1	1.25	0.25	0.0121	3.5	45
	a09m310	784	$32^3 \times 96$	0.09	0.2	310	4.5	8	6	1.1	1.25	0.25	0.00951	7.5	167
Ч-	a09m220	1001	$48^3 \times 96$	0.09	0.1	220	4.7	6	8	1.1	1.25	0.25	0.00449	8.0	150

MDWF pion mass tuned to taste-5 HISQ pion mass within 1-2% - ensuring the unitary limit is recovered in the continuum Free to use; large statistics available Capable of controlling all systematics We use domain wall valence on the HISQ sea, $\mathcal{O}(a^2)$ errors [1701.07559].

LQCD Systematics

physical quark masses

infinite volume limit

New Methods

New Analytic Tools

Improved Systematics Computationally Affordable

Effective Mass

$$\begin{split} t) &= \langle \Omega | \mathcal{O}(t) \mathcal{O}^{\dagger}(0) | \Omega \rangle \\ &= \sum_{n} \langle \Omega | e^{\hat{H}t} \mathcal{O}(0) e^{-\hat{H}t} \frac{|n\rangle \langle n|}{2E_{n}} \mathcal{O}^{\dagger}(0) | \Omega \rangle \\ &= \sum_{n} Z_{n} Z_{n}^{\dagger} \frac{e^{-E_{n}t}}{2E_{n}} \\ & M^{eff}(t) = -\partial_{t} \ln \left(C(t) \right) \\ &\lim_{t \to \infty} M^{eff}(t) = E_{0} \end{split}$$

C(

Matrix Elements

$\langle \Omega | \mathcal{O}(t) \ \bar{q} \Gamma q(\tau) \ \mathcal{O}^{\dagger}(0) | \Omega \rangle$

 $g_A: \ \bar{q}\gamma_\mu\gamma_5\tau^a q$

Widely separate sink, current insertion, and source

Two solves: one time separation but all bilinears

Standard Method

PNDME Phys. Rev. D94 (2016) arXiv:1606.07049

Feynman-Hellmann Method

Bouchard, Chang, Kurth, Orginos, and Walker-Loud arXiv:1612.06963

See also Maiani, Martinelli, Paciello and Taglienti Nucl. Phys. B293 (1987) NPLQCD 1610.04545, 1611.00344, 1701.03456, 1702.02929

TUJ +

similar methods (other FH / GEVP):

- J. Bulava et. al. JHEP 01,140 (2012)
- F. Bernardoni et. al. Phys. Lett. B740, 278-284 (2015)
- A.J. Chambers et. al. Phys. Rev. D 90, 014510
- A.J. Chambers et. al. Phys. Rev. D 92, 114517
- M.J. Savage et. al. Phys. Rev. Lett. 119, 062002

similar fit function:

S. Capitani et. al. Phys. Rev. D 86, 074502

propagator construction:

L. Maiani et. al. Nucl. Phys. B293 (1987) G.M. de Divitiis et. al. Phys. Lett. B718 (2012))

Feynman-Hellmann Method

Bouchard, Chang, Kurth, Orginos, and Walker-Loud arXiv:1612.06963

See also Maiani, Martinelli, Paciello and Taglienti Nucl. Phys. B293 (1987) NPLQCD 1610.04545, 1611.00344, 1701.03456, 1702.02929

similar methods (other FH / GEVP):

- J. Bulava et. al. JHEP 01,140 (2012)
- F. Bernardoni et. al. Phys. Lett. B740, 278-284 (2015)
- A.J. Chambers et. al. Phys. Rev. D 90, 014510
- A.J. Chambers et. al. Phys. Rev. D 92, 114517
- M.J. Savage et. al. Phys. Rev. Lett. 119, 062002

similar fit function:

S. Capitani et. al. Phys. Rev. D 86, 074502

propagator construction:

L. Maiani et. al. Nucl. Phys. B293 (1987) G.M. de Divitiis et. al. Phys. Lett. B718 (2012))

Feynman-Hellmann Method

Bouchard, Chang, Kurth, Orginos, and Walker-Loud arXiv:1612.06963

See also Maiani, Martinelli, Paciello and Taglienti Nucl. Phys. B293 (1987) NPLQCD 1610.04545, 1611.00344, 1701.03456, 1702.02929

similar methods (other FH / GEVP):

- J. Bulava et. al. JHEP 01,140 (2012)
- F. Bernardoni et. al. Phys. Lett. B740, 278-284 (2015)
- A.J. Chambers et. al. Phys. Rev. D 90, 014510
- A.J. Chambers et. al. Phys. Rev. D 92, 114517
- M.J. Savage et. al. Phys. Rev. Lett. 119, 062002

similar fit function:

S. Capitani et. al. Phys. Rev. D 86, 074502

propagator construction:

L. Maiani et. al. Nucl. Phys. B293 (1987) G.M. de Divitiis et. al. Phys. Lett. B718 (2012))

Feynman-Hellman Method

Bouchard, Chang, Kurth, Orginos, and Walker-Loud arXiv:1612.06963

See also Maiani, Martinelli, Paciello and Taglienti Nucl. Phys. B293 (1987) NPLQCD 1610.04545, 1611.00344, 1701.03456, 1702.02929

similar methods (other FH / GEVP):

- J. Bulava et. al. JHEP 01,140 (2012)
- F. Bernardoni et. al. Phys. Lett. B740, 278-284 (2015)
- A.J. Chambers et. al. Phys. Rev. D 90, 014510
- A.J. Chambers et. al. Phys. Rev. D 92, 114517
- M.J. Savage et. al. Phys. Rev. Lett. 119, 062002

similar fit function:

S. Capitani et. al. Phys. Rev. D 86, 074502

propagator construction:

L. Maiani et. al. Nucl. Phys. B293 (1987) G.M. de Divitiis et. al. Phys. Lett. B718 (2012))

Two solves: all time separations but one bilinear

Example Effective Matrix Element

arXiv:1704.01114

Improved Systematics

PNDME Phys. Rev. D94 (2016) arXiv:1606.07049

Improved Systematics

arXiv:1704.01114

- Not QCD Specific
- Any fermion bilinear matrix element

- 3-point \rightarrow 2-point function: easier fits
- Known spectral decomposition
- Stochastic enhancement
- 3/2 the cost of one temporal separation

Besuits

Data + jupyter notebook available on GitHub

https://github.com/callat-qcd/project_gA

Bart-W. van Lith

Systematics for an example point

Systematics for an example point

Another example point

Systematics: m_{π}

Systematics: infinite volume, continuum

Model Average $gA = 1.2711(103)^{s}(39)^{x}(15)^{a}(19)^{v}(04)^{I}(55)^{M}$

Nature 558 (2018) 91

Final uncertainty is dominated by statistics, model selection, and chiral extrapolation.

Better control over the $m_{\pi} \sim 130$ MeV points will improve all three.

total (added in quadrature)	0.98%
model selection	0.43%
isospin breaking	0.03%
infinite volume	0.15%
continuum	0.12%
chiral	0.30%
statistical	0.81%

Comparison with previous LQCD results

Nature 558 (2018) 91

 g_A

Searches for violations of V–A

Alioli, Cirigliano, Dekens, de Vries, Mereghetti JHEP 1705 (2017) 086 arXiv:1703.04751

NNLO[+ct] χPT

 $g_A = g_0 + c_2 \epsilon_\pi^2 - (g_0 + 2g_0^3) \epsilon_\pi^2 \ln(\epsilon_\pi^2) + g_0 c_3 \epsilon_\pi^3$

Bernard and Meißner, PLB 639 (2006) 279-282

 $gA = 1.2711(103)^{s}(39)^{\chi}(15)^{a}(19)^{\nu}(04)^{I}(55)^{M}$

Nature 558 (2018) 91

 $\tau_n = \frac{(5172.0 \pm 1.1) \text{seconds}}{1 + 3g_A{}^2}$

According to the Standard Model 885(14) s

*Nico result (2005) was superseded by an updated and improved result, Yue (2013); †Preliminary results

Lucy Reading-Ikkanda/Quanta Magazine - Neutron Lifetime Puzzle Deepens, but No Dark Matter Seen

Outlook

nn Oscillations

Rinaldi, Syritsyn, Wagman, Buchoff, Schroeder, and Wasem 1809.00246

Physical point, continuum, infinite volume

Operator	$\left \overline{\mathrm{MS}}(2 \mathrm{GeV}),\right $	$\frac{\overline{\text{MS}}(2 \text{ GeV})}{\text{MIT bag B}}$	Bare,	$\chi^2/{ m dof}$
	$10^{-5} { m GeV^6}$		10^{-5} l.u.	
Q_1	-44(19)	5.0	-3.7(1.6)	0.75
Q_2	140(40)	12.8	11.8(3.2)	0.69
Q_3	-79(23)	9.7	-6.6(1.9)	0.72
Q_5	-1.43(64)	2.1	-0.096(42)	0.73

enhancement means experiments have greater reach

NEDM Svritsvn, Obki, Izubuchi CIPANP 2018 18

 $V = 48^{3} \times 96 (\times 24 \text{ DWF})$ a = 0.114 fm m_{\pi} = 139.2 MeV

Syritsyn, Ohki, Izubuchi CIPANP 2018 1810.03721

n EDM

Dragos, Luu, Shindler, de Vries LATTICE 2017 EPJ Web Conf 175 (2018) 06018 arXiv:1711.04730

m_{π} ~ 800 MeV; a~0.12 fm

Other Bilinear Matrix Elements

. . .

Published $g_{A^{QCD}} = 1.271(13)$

Published $g_A^{QCD} = 1.271(13)$ UPDATE $g_A^{QCD} = 1.2670(97)$ [0.76%]

*Nico result (2005) was superseded by an updated and improved result, Yue (2013); †Preliminary results

Lucy Reading-Ikkanda/Quanta Magazine - Neutron Lifetime Puzzle Deepens, but No Dark Matter Seen

Backup Slides

Improved systematics

Bouchard, Chang, Kurth, Orginos, and Walker-Loud arXiv:1612.06963

See also Maiani, Martinelli, Paciello and Taglienti Nucl. Phys. B293 (1987) NPLQCD 1610.04545, 1611.00344, 1701.03456, 1702.02929

Improved systematics

Bouchard, Chang, Kurth, Orginos, and Walker-Loud arXiv:1612.06963

See also Maiani, Martinelli, Paciello and Taglienti Nucl. Phys. B293 (1987) NPLQCD 1610.04545, 1611.00344, 1701.03456, 1702.02929

Comparison with the summation method

Summation method doesn't have this contamination

FH method requires new solves to study different insertions

Summation method needs new solves for different source-sink separations

The Ruler still rules: $m_N(m_\pi) \approx 800 \text{ MeV} + m_\pi$

F_{K}/F_{π} smearing study (m_{π} = 135 MeV)

Smearing Study

Nonperturbative Renormalization

What does this have to do with Feynman-Hellmann?

Bouchard, Chang, Kurt, Orginos, Walker-Loud arXiv:1612.06963

NPLQCD 1610.04545, 1611.00344, 1701.03456, 1702.02929

$$C(t) = \left\langle \mathcal{N}(t)\bar{\mathcal{N}}(0) \right\rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}U \,\mathcal{N}(t)\bar{\mathcal{N}}(0) \,e^{-S[U]} = \frac{\operatorname{tr}\left[\mathcal{N}(t)\mathcal{N}(0)e^{-\beta H}\right]}{\operatorname{tr}\left[e^{-\beta H}\right]}$$

$$m_{\text{eff}} = \frac{1}{\tau} \ln \left(\frac{C(t)}{C(t+\tau)} \right) \xrightarrow{t \to \infty} E_0$$

FH:
$$\frac{\partial E_{\lambda}}{\partial \lambda} = \left\langle \psi_{\lambda} \left| \frac{\partial \hat{H}_{\lambda}}{\partial \lambda} \right| \psi_{\lambda} \right\rangle$$

 $\partial_{\lambda} E_0 = a$ matrix element of interest

What does this have to do with Feynman-Hellmann?

Bouchard, Chang, Kurt, Orginos, Walker-Loud arXiv:1612.06963

NPLQCD 1610.04545, 1611.00344, 1701.03456, 1702.02929

$$S[U] \to S[U] + \lambda \int_x \mathcal{J}(x)\mathcal{O}(x)$$

$$\partial_{\lambda}C(t) = -\left\langle \mathcal{N}(t) \left(\int_{x} \mathcal{J}(x)\mathcal{O}(x) \right) \bar{\mathcal{N}}(0) \right\rangle$$

 \mathbf{r}

$$\frac{\partial m_{\text{eff}}}{\partial \lambda}\Big|_{\lambda=0} = \frac{1}{\tau} \left[\frac{\partial_{\lambda} C(t)}{C(t)} - \frac{\partial_{\lambda} C(t+\tau)}{C(t+\tau)} \right]\Big|_{\lambda=0}$$

 $\mathcal{J}_{\mu}(x) = 1$ $\mathcal{O}^{\mu}(x) = \bar{q}\gamma^{\mu}\gamma^{5}\tau^{+}q$

 $\xrightarrow{t \to \infty} g_A + O\left(e^{-E_n t}\right)$

Improved systematics

Bouchard, Chang, Kurth, Orginos, and Walker-Loud arXiv:1612.06963

See also Maiani, Martinelli, Paciello and Taglienti Nucl. Phys. B293 (1987) NPLQCD 1610.04545, 1611.00344, 1701.03456, 1702.02929

$$g_{nn}^{J} \equiv \frac{J_{nn}}{2E_{n}} \quad J_{nn} = \langle n|J|n \rangle$$

$$g_{nm}^{J} \equiv \frac{J_{nm}}{\sqrt{4E_n E_m}}$$
$$J_{nm} = \langle n|J|m \rangle$$

 $\Delta_{nm} \equiv E_n - E_m$

$$N_{J}(t) = \sum_{t'} \langle \Omega | T\{O(t)J(t')O^{\dagger}(0)\} | \Omega \rangle$$

$$\underset{N_{J}(t)}{\text{time dependence of what you want}}$$

$$N_{J}(t) = \sum_{n} \left[\underbrace{t-1}_{n} z_{n} g_{nn}^{J} z_{n}^{\dagger} + d_{n}^{J} \right] e^{-E_{n}t}$$

$$+ \sum_{n} z_{n} g_{nm}^{J} z_{m}^{\dagger} \frac{e^{-E_{n}t + \frac{\Delta_{nm}}{2}} - e^{-E_{m}t} + \frac{\Delta_{mn}}{2}}{e^{\Delta_{nm}}}$$

 $\substack{n\\m \neq n}$

 Ω

differs from the time dependence of pieces you don't care about

 $e^{\frac{\Delta_{nm}}{2}} - e^{\frac{\Delta_{nm}}{2}}$

$$d_n^J \equiv Z_n Z_{J:n}^{\dagger} + Z_{J:n} Z_n^{\dagger} + Z_n Z_n^{\dagger} \langle \Omega \mid J \mid$$

+
$$\sum_j \frac{Z_n Z_{nj}^{\dagger} J_j^{\dagger} + J_j Z_{jn} Z_n^{\dagger}}{2E_j (e^{E_j} - 1)}$$

